Журналы →  Obogashchenie Rud →  2020 →  №1 →  Назад

TECHNOLOGICAL MINERALOGY
Название The use of the structure crystallinity index as a criterion for evaluating the concentration potential of quartz raw materials
DOI 10.17580/or.2020.01.07
Автор Zhaboedov A. P., Zimin M. D., Nepomnyashchikh A. I., Sapozhnikov A. N.
Информация об авторе

Vinogradov Institute of Geochemistry, SB RAS (Irkutsk, Russia):

Zhaboedov A. P., Junior Researcher, rover2808@yandex.ru
Zimin M. D., Research Engineer, zima.dom@mail.ru
Nepomnyashchikh A. I., Chief Researcher, Doctor of Physical and Mathematical Sciences, Professor, ainep@igc.irk.ru
Sapozhnikov A. N., Senior Researcher, sapozh@igc.irk.ru

Реферат

The paper presents the results of a comprehensive geochemical and X-ray structural study of quartzite of the Gargan block of East Sayan, aimed at expanding the mineral resource base of high-grade quartz raw materials.Within the region, three quartzite-bearing blocks were established and studied, namely, Urengenursky, Oka-Uriksky, and Urda-Gargansky. A comparison of the blocks rendered the most promising types of quartzites. For each type, a processing flow diagram was developed, taking into account the specific features of their mineral and fluid inclusions and textural and structural characteristics. The concentrations of impurity elements in quartzites and quartz concentrates were established by inductively coupled plasma mass spectrometry (ICP-MS). Using the results of powder X-ray structural analysis, the crystallinity index of quartz for each type of quartzite was calculated. It was found that high contents of impurities in the initial rock had practically no effect on the crystallinity index and concentration potential. This enables the use of this method for direct comparisons of the crystal structure of quartz grains in quartzites, regardless of the amount of host minerals. Crystallinity index calculations for the quartz structure based on powder X-ray structural analysis data enable efficient and high-quality identification of the most promising types of quartz raw materials due to the inversely proportional relationship between the crystallinity index and the decimal logarithm of the total impurity content in the quartz concentrate.

The study was conducted as part of the state assignment under project IX.125.3.2.

Ключевые слова Quartzite, ICP-MS, quartz crystallinity index, powder X-ray structural analysis, quartz concentrate
Библиографический список

1. Serykh N. М., Frolov А. А. From the history of the development of the industry direction of work on piezo-optical, quartz and gemstone raw materials. Razvedka i Okhrana Nedr. 2007. No. 10. pp. 2–9.
2. Gotze J., Pan Y., Muller A., Kotova E., Cerin D. Trace element composition and defect structures of high-purity quartz frome Southern Ural Region, Russia. Minerals. 2017. Vol. 7. Paper 189. 19 p.
3. Sokolov I. V., Smirnov A. A., Antipin Y. G., Baranovsky K. V., Rozhkov A. A. Resource-saving technology for underground mining of high-value quartz in Kyshtym. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2015. No. 6. pp. 133–145.
4. Vatalis K. I., Charalambides G., Benetis N. P. Market of high purity quartz innovative applications. Procedia Economics and Finance. 2015. Vol. 24. pp. 734–742.
5. Haus R., Prinz S., Priess C. Assessment of high purity quartz resources. Quartz: deposits, mineralogy and analytics. Berlin, Heidelberg: Springer, 2012. pp. 29–51.
6. Zuo R.-F., Du G.-X., Yang W.-G., Liao L.-B., Li Z. Mineralogical and chemical characteristics of a powder and purified quartz from Yunnan Province. Open Geosciences. 2016. Vol. 8, Iss. 1. pp. 606–611.
7. Du X., Liang C., Hou D., Sun Z., Zheng S. Scrubbing and inhibiting coagulation effect on the purification of natural powder quartz. Minerals. 2019. Vol. 9, Iss. 3. Paper 140.
8. Nepomnyashchikh A. I., Volkova M. G., Zhaboedov A. P., Lesnikov A. K., Lesnikov P. A., Paklin A. S., Sizova T. Y., Spiridonov A. M., Fedorov A. M., Shalaev A. A., Shendrik R. Y. Optical glass based on the East Sayan Mountain quartzites. Fizika i Khimiya Stekla. 2018. Vol. 44, No. 2. pp. 169–177.
9. Nepomnyashchikh A. I., Zhaboedov A. P., Volkova M. G., Fedorov A. M., Yashin V. N. The combined beneficiation technology for the East Sayan quartzites. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2019. No. 3. pp. 113–121.
10. Toyoda S., Nagashima K., Yamamoto Y. ESR signals in quartz: applications to provenance research – A review. Quaternary International. 2016. Vol. 397. pp. 258–266.
11. Howe H., Hollon B., Schulze R., King M., Rasmussen N. Characterizing quartz phases in the Meramec and Osage of the STACK Region using X-ray diffraction. Proc. of the 7th Unconventional resources technology conference, Denver, Colorado, 22–24 July 2019. pp. 5369–5380.
12. Saito K., Tada R., Zheng H., Irino T., Luo C., He M., Wang R., Suzuki Y. ESR signal intensity of quartz in the finesilt fraction of riverbed sediments from the Yangtze River: a provenance tracer for suspended particulate matter. Progress in Earth and Planetary Science. 2017. Vol. 4. Article 4.
13. Razva О. S., Anufrienkova А. М., Korovkin М. V. Assessment of the degree of quartzites transformation by X-ray diffraction. Sovremennye Naukoemkie Tekhnologii. 2014. No. 7–2. pp. 27–28.
14. Murata K. J., Norman II M. B. An index of crystallinity for quartz. American Journal of Science. 1976. Vol. 276. pp. 1120–1130.
15. Korovkin M. V., Ananieva L. G., Nebera T., Antsiferova A. Assessment of quartz materials crystallinity by X-ray diffraction. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 110, Iss. 1. Paper 012095.
16. Ma J., Huang Z., Liang S., Liu Z., Liang H. Geochemical and tight reservoir characteristics of sedimentary organicmatter-bearing tuff from the Permian Tiaohu Formation in the Santanghu Basin, Northwest China. Marine and Petroleum Geology. 2016. Vol. 73. pp. 405–418.
17. Fedorov A. M., Makrygina V. A., Nepomnyaschikh A. I., Zhaboedov A. P., Parshin A. V., Posokhov V. F., Sokolnikova Yu. V. Geochemistry and petrology of superpure quartzites from East Sayan Mountains, Russia. Acta Geochimica. 2019. Vol. 38, Iss. 1. pp. 22–39.
18. Defects in SiO2 and related dielectrics: science and technology. Ed. Pacchioni G., Skuja L., Griscom D. L. Dordrecht: Springer Science & Business Media, 2012. Nato Science Series II. 624 p.

Language of full-text русский
Полный текст статьи Получить
Назад