Журналы →  Chernye Metally →  2018 →  №11 →  Назад

60th anniversary of the Metal forming chair of the Lipetsk State Technical University
Название Simulation of dynamic recrystallization and resistance to deformation of carbon and low-alloyed steels during hot forming
Автор V. V. Shkatov, I. P. Mazur, M. Knapinski, T. S. Chetverikova
Информация об авторе

Lipetsk State Technical University (Lipetsk, Russia):

V. V. Shkatov, Dr. Eng., Prof., e-mail: shkatov@mail.ru
I. P. Mazur, Dr. Eng., Prof., Head of the Chair of Metal Forming, e-mail: mazup_ip@mail.ru
T. S. Chetverikova, Post-Graduate Student, e-mail: izuchksi@yandex.ru

 

Czestochowa Technological University (Czestochowa, Poland):
M. Knapinski, Dr. Eng., Prof., e-mail: knap@wip.pcz.pl

Реферат

During hot plastic deformation of structural steels, one of the promising ways to obtain high values of strength and plastic properties of finished metal products is regulation of the recrystallization processes of a deformed metal on the base of mathematical models. This article presents a mathematical model for predicting dynamic recrystallization during hot deformation of carbon and low-alloyed steels, which is based on the method of recalculation of the static recrystallization kinetics to the conditions of continuous increase in the degree of deformation during metal deformation. The results of the recrystallization kinetics calculation were used to predict the resistance to deformation of the steel. The model’s adequacy was tested by comparing the results of the calculation of the deformation resistance of low-alloyed steel with experimental data.
The study was made within execution of State assignment of RF Ministry of Education and Science, the project № 11.1446.2017/PCh.

Ключевые слова Model, steel, hot deformation, dynamic recrystallization, static recrystallization, resistance to deformation, prediction
Библиографический список

1. Kern А., Walter P., Pfeiff er E., Tschersich H.–J. Complex for flat steel production in China. Chernye Metally. 2017. No. 6. pp. 51–57.
2. Chabbi L. Simulation of microstructure and mechanical properties in section rolling. Chernye Metally. 2017. No. 9. pp. 57–62.
3. Korchunov A. G., Gun G. S., Shiryaev O. P., Piviovarova K. G. Study of structural transformation of hot-rolled carbon billets for highstrength ropes for responsible applications via the method of thermal analysis. CIS Iron and Steel Review. 2017. Vol. 13. pp. 39–42.
4. Shkatov V. V., Mazur I. P., Kavalek A., Zhuchkova T. S. Model for austenite static recrystallization in carbon and low-alloyed steels during hot rolling. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2017. Vol. 15. No. 2. pp. 69–68.
5. Chastukhin A. V., Ringinen D. A., Khadeev G. E., Efron L. I. Austenite static recrystallization kinetics in Nb-microalloyed tube steels. Metallurg. 2015. No. 12. pp. 33–38.
6. Kubota M., Kobayashi Y., Ushioda K., Takahashi J. Eff ects of Alloying Elements on Static Recrystallization Behavior of Work-Hardened Austenite of High Carbon Low Alloy Steel. Materials Transactions. 2017. Vol. 58, Iss. 2. pp. 186–195.
7. Larrañaga-Otegui A., Pereda B., Jorge-Badiola D., Gutiérrez I. Austenite Static Recrystallization Kinetics in Microalloyed B Steels. Metallurgical and Materials Transactions: A. 2016. Vol. 47, Iss. 6. pp. 3150–3164.
8. Gorelik S. S., Dobatkin S. V., Kaputkina L. М. Recrystallization of metals and alloys. Moscow: MISiS, 2005. 432 p.
9. Nakata N., Militzer M. Modelling of Microstructure Evolution during Hot Rolling of a 780 MPa High Strength Steel. ISIJ International. 2005. Vol. 45, Iss. 1. pp. 82–90.
10. Hodgson P. D., Zahiri S. H., Whale J. J. The Static and Metadynamic Recrystallization Behaviour of an X60 Nb Microalloyed Steel. ISIJ International. 2004. Vol. 44, Iss. 7. pp. 1224–1229.
11. Siciliano F., Jonas J. J. Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-Alloyed Cr–Mo, and Plain C–Mn Steels. Metallurgical and Materials Transactions: A. 2000. Vol. 31A, Iss. 2. pp. 511–530.
12. Cho S.-H., Kang K.-B., Jonas J. J. Mathematical Modeling of the Recrystallization Kinetics of Nb Microalloyed Steels. ISIJ International. 2001. Vol. 41, Iss. 7. pp. 766–773.
13. Lizunov V. I., Shkatov V. V., Molyarov V. G., Kanev V. P. Steel structure quality control during hot rolling. Metallovedenie i termicheskaya obrabotka metallov. 1999. No. 4. pp. 52–56.
14. Medina S. F., Quispe A. Improved Model for Static Recrystallization Kinetics of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels. ISIJ International. 2001. Vol. 41, Iss. 7. pp. 774–781.
15. Chen F., Cui Z., Chen J. Prediction of microstructural evolution during hot forging. Manufacturing Rev. 2014. Vol. 1, Iss. 6. pp. 1–21.
16. Hallberg H. Approaches to modeling of recrystallization. Metals. 2011. Vol. 1, Iss. 1. pp. 16–48.
17. Xiao N., Chen Y., Li D., Li Y. Progress in mesoscopic modeling of microstructure evolution in steels. Science China-Technological Sciences Journal. 2012. Vol. 55, Iss. 2. pp. 341–356.
18. Beynon J. H., Sellars C. M. Modeling Microstructure and Its Effects During. Multipass Hot Rolling. ISIJ International. 1992. Vol. 32, Iss. 3. pp. 359–367.
19. Shkatov V. V., Shkatov M. I. Prediction of critical deformation corresponding dynamic recrystallization process onset in steels. Izvestiya vuzov. Chernaya metallurgiya. 2008. No. 3. pp. 59–61.
20. Shkatov M. I. Regularities of processes for austenite structure forming in carbon and low-alloyed steels during hot deformation: thesis of inauguration of Dissertation …of Candidate of Engineering Sciences. Yugo-Zapadny gosudarstvenny universitet. Kursk, 2013. 16 p.
21. Misaka Y., Yoshimoto T. Formulation of mean resistance of deformation of plain carbon steel at elevated temperature. Journal of the Japan Society for Technology of Plasticity. 1967. Vol. 8. pp. 414–422.
22. Minami K., Siciliano F., Maccagno T.M., Jonas J. J. Mathematical Modeling of Mean Flow Stress during the Hot Strip Rolling of Nb Steels. ISIJ International. 1996. Vol. 36, Iss. 12. pp. 1507–1515.
23. Laasraoui A., Jonas J. J. Prediction of Steel Flow Stresses at High Temperatures and Strain Rates. Metallurgical and Materials Transactions: A. 1991. Vol. 22A, Iss. 7. pp. 1545–1558.

Language of full-text русский
Полный текст статьи Получить
Назад