Журналы →  Obogashchenie Rud →  2017 →  №6 →  Назад

SECONDARY RAW MATERIAL PROCESSING
Название Specifics of crushed electronics scrap components electrostatic separation
DOI 10.17580/or.2017.06.09
Автор Mezenin A. O.
Информация об авторе

REC «Mekhanobr-Tekhnika» (St. Petersburg, Russia):

Mezenin A. O., Chief Specialist, Candidate of Engineering Sciences, mezenin_ao@npk-mt.spb.ru

Реферат

Electrostatic separation is one of the most promising methods of primary separation of electronics scrap, subjected to preliminary crushing. Specific behavior of crushed electronics scrap components with different conductivity was studied during electrostatic separation process. Separation was conducted on laboratory electrostatic separators of two types — triboelectrostatic separator and corona-type drum separator. The results of the studies corroborated a possibility of finely crushed electronics scrap (printed-circuit boards) selective separation by means of electrostatic separation. It is shown, that the studied methods of separation do not permit to conduct efficient separation of conductors, non-conductors and semi-conductors in one run. It has been established, that using triboelectrostatic separation, it is advantageous to separate conductors in first run, with subsequent separation of non-conductors and semi-conductors, while with application of corona electrostatic separation – non-conductors in first run, with subsequent separation of conductors and semi-conductors.
The work was performed with the aid from the Ministry of Education and Science of the Russian Federation, the Government Agreement No. 14.585.21.0007. UIPNI RFMEFI 58516X0007.

Ключевые слова Electronics scrap, triboelectrostatic separation, corona electrostatic separation, conductors, non-conductors, semi-conductors
Библиографический список

1. Vaisberg L. A., Zarogatsky L. P. Modern technology for recycling of electronic and cable scrap. Obogashchenie Rud. 1999. No. 6. pp. 29–30.
2. Duan C., Wen X., Shi C., Zhao Y., Wen B., He Y. Recovery of metals from waste printed circuit boards by a mechanical methods using a water medium. J. Hazard. Mater. 2009. Vol. 166, Iss. 1. pp. 478–482.
3. Eswaraiah C., Kavitha T., Visasagar S., Narayanan S. S. Classification of metals and plastics from printed circuit boards using air classifier. Chem. Eng. Process. Intensify. 2008. Vol. 47. pp. 565–576. DOI: 10.1016/j.cep.2006.11.010.
4. Silvas F. P. C., Jiménez Correa M. M., Caldas Marcos P. K., de Moraes V. T., Espinosa D. C. R., Tenório J. A. S. Printed circuit board recycling: physical processing and copper extraction by selective leaching. Waste Management. 2015. Vol. 46. pp. 503–510.
5. Zhou Y., Qiu K. A new technology for recycling materials from waste printed circuit boards. J. Hazard. Mater. 2010. Vol. 175, Iss. 1–3. pp. 823–826.
6. Cui J., Zhang L. Metallurgical recovery of metals from electronic waste: a review. J. Hazard. Mater. 2008. Vol. 158, Iss. 2–3. pp. 228–256.
7. Kaya M. Recovery of metals from electronic waste by physical and chemical recycling processes. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 2016. Vol. 10, No. 2. pp. 259–270.
8. Guo Ch., Wang H., Liang W., Jiangang F., Yi X. Liberation characteristic and physical separation of printed circuit board (PCB). Waste Management. 2011. Vol. 31, Iss. 9–10. pp. 2161–2166.
9. Hou S. B., Wu J., Qin Y. F., Xu Z. M. Electrostatic separation for recycling waste printed circuit board. Environ. Sci. Technology. 2010. Vol. 44. pp. 5177–5181.
10. Timatine A., Medles K., Bendimerad S. E., Boukholda F., Dascalescu L. Electrostatic separation of particles: application to plastic/metal, metal/metal and plastic/plastic mixtures. Waste Management. 2009. Vol. 29, Iss. 1. pp. 228–232.
11. Dascalescu L., Zeghloul T., Iuga A. Electrostatic separation of metals and plastics from waste electrical and electronic equipment. WEEE Recycling. Eds A. Chagnes, G. Cote, C. Ekberg, M. Nilsson, T. Retegan. Amsterdam: Elsevier, 2016. pp. 75–106.
12. Dmitriev S. V., Stepanyan A. S. Microelectronics scrab salvaging technology and equipment — modern trends. Obogashchenie Rud. 2017. No. 2. pp. 49–53. DOI: 10.17580/or.2017.02.09.
13. Zhang G., Wang H., He Y., Yang X., Peng Z., Zhang T., Wang S. Triboelectric separation technology for removing inorganics from non-metallic fraction of waste printed circuit boards: influence of size fraction and process optimization. Waste Management. 2017. Vol. 60. pp. 42–49.
14. Vaisberg L. A., Ustinov I. D. Commercial and laboratory equipment for natural and man-produced raw materials processing. Obogashchenie Rud. 2010. No. 5. pp. 25–28.
15. Xue M., Yan G., Li J., Xu Z. Electrostatic separation for recycling conductors, semiconductors and nonconductors from electronic waste. Environ. Sci. Technol. 2012. Vol. 46. pp. 10556–10563.

Language of full-text русский
Полный текст статьи Получить
Назад