Название |
Phase composition and thermal properties of ladle smelting slags of AVTU, AKhMK and ATsMO foundry alloys |
Информация об авторе |
Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia:
S. A. Vokhmentsev, Post-Graduate Student A. V. Larionov, Researcher, e-mail: a.v.larionov@ya.ru R. I. Gulyaeva, Senior Researcher V. M. Chumarev, Chief Researcher |
Реферат |
Our article shows the results of X-ray phase and differential-thermal analysis of phase composition and thermal properties of rapidly cooled high-aluminous slags, formed during the aluminothermic smelting of AVTU (Al – V – Ti – C), AKhMK (Al – Cr – Mo – Si) and ATsMO (Al – Zr – Mo – Sn) foundry alloys in copper moulds. The AVTU and AKhMK slags have the following basic phases: Al2O3, CaAl12O19 (CA6) and CaOAl4O6 (CA2). According to the chemical analysis data, CaF2 was found in all slag samples, and a small amount of KCl was found in the AVTU foundry alloy smelting slag. This KCl was entered as halite into the foundry alloy smelting charge. The ATsMO foundry alloy smelting slag revealed the aluminate СaAl2O4 (CA) of orthorhombic and monoclinic crystal systems, clacium zirconates CaZrO3, CaZr4O9 and free aluminium oxide α-Al2O3.Two modifications of aluminate CaAl2O4 in slag are explained by metastability. The X-ray phase analysis showed that a high velocity of slag cooling and presence of small amounts of calcium fluoride and rare metal oxides in this slag have no significant effect on phase formation. The diffractometry data made a conclusion that the main phases of rapidly-cooled slags of ladle aluminothermic smelting of foundry alloys (based on rare refractory metals) are identical to the ones, formed in the equilibrium solidification of foundry alloys based on Al2O3 – CaO melts. The amorphism of the investigated slag samples is insignificant. Thermal analysis of the samples of AVTU, AKhMK and ATsMO slags defined the effects of devitrification and “cold” crystallization, confirming the presence of amorphous phases in slags, and endoeffects related to the smelting of their phase terms. The heating thermograms showed that the complete dissolutions of smelting slag of AVTU, AKhMK and ATsMO foundry alloys are in the temperatures of 1879 oC, 1881 oC and 1773 oC, respectively. In comparison with the AVTU and AKhMK slags, lower temperatures of ATsMO slag crystallization are connected with its lesser content of aluminium oxide. Our research work was carnied out with the financial support of the Program of the Ural Branch of RAS, project No. 15-6-3-30. |
Библиографический список |
1. Chumarev V. M., Marevich V. P., Chentsov V. P., Pazdnikov I. P., Pankov M. N., Baklanov M. N. Phase composition and melting temperatures of aluminothermy alloying composition of rare high-melting metals. Rasplavy. 2009. No. 3. pp. 29–35. 2. Trubachev M. V., Rylov A. N., Chumarev V. M., Larionov A. V. Test of the out-of-furnace metallothermic and vacuum-induction methods of the Al –Zr – Mo – Sn master alloy smelting. Titan. 2015. No. 2 (48) pp. 4–10. 3. Vokhmentsev S. A., Rylov A. N., Trubachev M. V., Taranov D. V., Chumarev V. M., Larionov A. V. Smelting of the Al – V – Ti – C master alloy by duplex process. Titan. 2016. No. 3 (53). pp. 43–46. 4. Ferreirós P. A., Alonso P. R., Gargano P. H., Bozzano P. B., Troiani H. E., Baruj A., Rubiolo G. H. Characterization of microstructures and age hardening of Fe1–2xAlxVx alloys. Intermetallics. 2014. Vol. 50. pp. 65–78. 5. Okamoto H. Al – V (Aluminium-Vanadium). Journal of Phase Equilibria and Diffusion. 2012. Vol. 33, No. 6. p. 491. 6. Atlas of slags : reference book. Translated from German. Ed.: I. S. Kulikov. Moscow : Metallurgiya, 1985. 208 p. 7. Yanwu Dong, Zhouhua Jiang, Ang Ya. Dissolution Behavior of Alumina-Based Inclusions in CaF2 – Al2O3 – CaO – MgO – SiO2 Slag Used for the Electroslag Metallurgy Process. Metals. 2016. Vol. 6 (11). pp. 273–281. 8. Udoeva L. Yu., Pankov I. A., Selmenskikh N. I., Chumarev V. M. Formation of Nb – Al alloys structure in non-equilibrium crystallization. Proceedings of the 11-th International symposium “Ordering in minerals and alloys”. 2008. Vol. II. pp. 210–212. 9. Kravchenko I. V. Alumina cement. Moscow : Gosstroyizdat, 1961. 250 p. 10. Toropov N. A., Astreeva O. M. Phase analysis of some alumina slags and clinkers. Trudy NIItsement. 1960. No. 2. pp. 52–55. 11. International Centre for Diffraction Data. ICDD PDF (США. 2012). Available at : www.icdd.com 12. Jerebtson D. A., Mikhailov G. G. Phase diagram of CaO – Al2O3 system. Ceramics International. 2001. Vol. 27. pp. 25–28. 13. Ito S., Ikai K., Suzuki K., Inagaki M. Metastable Orthorhombic CaO·Al2O3. Journal of the American Ceramic Society. 1975. Vol. 58, No. 1. pp. 79, 80. 14. Mazurin O. V. Glass transition. Leningrad : Nauka, 1986. 158 p. 15. Selivanov E. N., Gulyaeva R. I., Zelyutin D. I., Belyaev V. V., Selmenskikh N. I. Influence of cooling velocity on the slag structure of copper-zinc concentrates smelting in the Vanyukov furnace. Tsvetnye Metally. 2009. No. 12. pp. 27–31. 16. Gulyaeva R. I., Zaripov R. Z., Selivanov E. N., Selmenskikh N. I. Influence of calcium oxide on thermal properties of granular high-ferruginous slags. Proceedings of the XI Russian Conference “Structure and properties of metallic slag melts”. Ekaterinburg. 2015. pp. 143–195. 17. Karamanov A., Pelino M. Vitrification of copper flotation waste. Journal of Non-Crystalline Solids. 2001. Vol. 281, No. 1/2. pp. 333–339. 18. Zaitsev A. I., Korolyov N. V., Mogutnov B. M. Phase equilibria in the CaF2 – Al2O3 – CaO system. Journal of Materials Science. 1991. Vol. 26. pp. 1588–1600. 19. Fabrichnaya O., Arnout S. Calcium – Oxygen – Zirconium. Landolt-Börnstein. SpringerMaterials – Group IV Physical Chemistry. 2010. Vol. 11E3 (Refractory metal systems). Ed.: G. Effenberg, S. Ilyenko. Available at : http://materials.springer.com/lb/docs/sm_lbs_978-3-642-00771-2_6. 20. Murakami T., Fukuyama H., Kishida T., Susa M., Nagata K. Phase Diagram for the System CaO – Al2O3 – ZrO2. Metallurgical and Materials Transactions B. 2000. Vol. 31, No. 1. pp. 25–33. |