Журналы →  Obogashchenie Rud →  2017 →  №5 →  Назад

ORE PREPARATION
Название Thermal treatment effect upon sylvinite ore disintegration
DOI 10.17580/or.2017.05.02
Автор Samukov А. D., Gladkova V. V.
Информация об авторе

REC «Mekhanobr-Tekhnika» (St. Petersburg, Russia):

Samukov A. D., Head of Department, samykov_ad@npk-mt.spb.ru
Gladkova V. V., Senior Engineer, gladkova_vv@npk-mt.spb.ru

Реферат

Almost all operating sylvinite ore processing facilities are applying technologies based on «wet» processes — grinding and flotation, leading to an array of environmental problems. A comprehensive solution is to change to dry grinding of potash ores with subsequent dry beneficiation, using magnetic and electrostatic separation, that demand preliminary thermal treatment of ore. The studies on thermal treatment were conducted on the Verkhnekamskoye deposit ore sample. The ore samples structure and texture characteristics were obtained with the help of X-ray microtomography using the apparatus Sky Scan 1173. Heated sylvinite was crushed in laboratory hammer crusher MD-30.65, recording power consumption parameters. It was established, that with sylvinite heating from 120 to 250 °С, specific power consumption per size reduction weighted average degree unit is increased by the factor of 1.03 upon the average; with heating from 250 to 400 °С — by the factor of 1.16 and with heating from 400 до 550 °С — by the factor of 1.48. The studies on the ore samples internal structure prior and following thermal treatment at 500 °С were conducted by the method of X-ray microtomography. The results show that different ore components behave dissimilarly. For the sample that practically does not contain insoluble fractions, it is characteristical that porosity is somewhat increased after thermal treatment and in respect of the samples containing insoluble fractions, porosity is noticeably decreased. The ore mass horizontal deformation (shear) measurement test showed that with increase in ore mass temperature, shearing stress is increased, revealing that ore mass «viscosity» is increased, causing higher power consumption for its disintegration in hammer crusher. As the final result, an innovative method of power consumption estimation in ore disintegration in hammer crusher has been developed. An assumption is put forward that power consumption increase in potash ores disintegration with thermal treatment is mainly attributable to changes in ore mass mechanical-and-physical properties, affecting its behavior in hammer crusher work volume.

Ключевые слова Potash ore, halite, sylvite, thermal treatment, dry grinding, hammer crusher, power consumption
Библиографический список

1. Rauche H. A. M., Fulda D. Tailings and disposal brine reduction — design criteria for potash production in the 21-st century. Proc. of 8 International Conference on tailings and mine waste’01, Colorado, USA, Jan. 16–19, 2001. Rotterdam: Brookfield, 2001. P. 85–92.
2. Baturin E. N., Menshikova E. A., Blinov S. M., Naumov D. Yu., Belkin P. A. Problems of the development of the world largest potash deposits. Sovremennye Problemy Nauki i Obrazovaniya. 2012. No. 6. pp. 613–622.
3. Arsentyev V. A., Bortnikov A. V., Samukov A. D., Sabirov R. Kh., Novoselov V. A., Aliferova S. N., Teterina N. N. Prospects of using cone inertial crushers in the cycle of sylvinite ore preparation for beneficiation. Gornyi Zhurnal. 2005. No. 9–10. pp. 75–78.
4. Titkov S. N. Technology of potash ore dry crushing to flotation size. IX Congress of CIS countries mineral processors. Collection of materials. Vol. 2. Moscow: MISiS, 2013. pp. 578–583.
5. Author's certificate 453389 USSR.
6. Shemyakina M. G., Molokovich S. O., Smychkova A. N., Stromsky A. S. Sylvinite ore processing by means of magnetic separation method. Obogashchenie Rud. 2009. No. 6. pp. 12–13.
7. Palivoda E. N., Kuptel G. A. Estimation of the possibility of Starobinskoye deposit potassium ore beneficiation by electric method. Science for education, production, economics: materials of the 12th Intern. scientific-techn. conf. Vol. 3. Minsk: BNTU, 2017. pp. 29–30.
8. Author's certificate 1720712 USSR.
9. Shevchuk V. V., Zhdanovich I. B., Rudakovskaya T. G., Mozheiko F. F. On nature of impregnation of clay-carbonate minerals in potassium ore at the 4th pit of Starobin field. Vesti Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2007. No. 4. pp. 106–110.
10. Levdansky E. I., Grebentchuk P. S., Levdansky A. E. Improving potassium fertilizer production technology. Vesti Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2007. No. 4. pp. 99–105.
11. Mozheyko F. F., Potkina T. N. Physico-chemical principles for enrichment of highly clayey off-balance sylvinite ores. Vesti Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2008. No. 4. pp. 25–32.
12. Tompson Y. B., Waldbaum D. E. Analysis of the two-phase region halite-sylvite in the system NaСl/KCl. Geochimica et Cosmochimica Acta. 1969. Vol. 33, No. 6. pp. 671–690.
13. Green E. Y. Predictive thermodynamic models of the mineral systems: Quasi-chemical analysis of the halite-sylvite subsolids. American Mineralogist. 1970. Vol. 55. pp. 1692–1713.
14. Sterner S. M., Chou I-Ming, Downs R. T., Pitzer K. S. Phase relations in system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures. Geochimica et Cosmochimica Acta. 1992. Vol. 56, Iss. 6. pp. 2295–2309.
15. Walker D., Verma P. K., Cranswick L. M. D., Jones R. L., Clark S. M., Buhre S. Halite-sylvite thermoelasticity. American Mineralogist. 2004. Vol. 89, Iss. 1. pp. 204–210.
16. Zhdanovich I. B., Rudakovskaya T. G., Mozheiko F. F., Shevchuk V. V. Effect of salt clays' thermal treatment on structural and rheology properties of their dispersions. Izvestiya Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2011. No. 3. pp. 113–117.
17. Rudakovskaya T. G., Zhdanovich I. B., Shevchuk V. V., Labkovich O. N. The effect of drying conditions on properties of potassium chloride granules obtained by pelletization. Izvestiya Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2012. No. 1. pp. 96–99.

Language of full-text русский
Полный текст статьи Получить
Назад