AUTOMATION | |
Название | Simulation model of bar iron cutting |
DOI | 10.17580/tsm.2017.10.12 |
Автор | Kapralov D. S., Donchan D. M., Salikhov M. Z. |
Информация об авторе | Institute of Control Sciences RAS, Moscow, Russia: D. S. Kapralov, Post-Graduate Student of Laboratory 41, e-mail: myrumail.77@mail.ru |
Реферат | Commercializing led to the influence of all financial costs of rolled products manufacturing on rolled products competitiveness. The crop end volume is sufficient among all these costs, because those rolled products, sub-standard by geometrical dimension, are sold to consumers at a low price or they are able to sequent melting and further technological stages of production. We carried out the analysis of the reasons of crop end formation on the rolling mill 250 with two-stage cutting of bar iron. The mathematical models of thermal broadening of bar iron and material flows on the rolling mill 250 are shown. We found the correspondence of the problem of optimal cutting of bar iron to the knapsack problem (NP-complete problems). We also briefly analyzed and offered the existing methods of this problem solving. We stated the universal target function for cutting of rolled products made of non-ferrous metals, alloys and ferrous metals. The initial data for mathematical model of the considered system are given. The analysis of the obtained graphic results was carried out, and the convergence for the final number of iterations was shown. We developed and briefly described the software complex OPTIKS 1.0, where all the mathematical models considered above, are realized. This software complex has a graphical user interface and works as an adviser of cutting operator. The main function of this software complex is an early calculation of the best cutting mode (before rolling)and its visualization for operator. |
Ключевые слова | Minimization of crop end, best cutting, OPTIKS, cluster analysis, genetic algorithm, Monte-Carlo method, knapsack problem, stock of orders |
Библиографический список | 1. Kantorovich L. V. Mathematical methods of production scheduling and organization. Leningrad : LGU, 1939. 68 p. |
Language of full-text | русский |
Полный текст статьи | Получить |