Журналы →  Tsvetnye Metally →  2017 →  №9 →  Назад

HEAVY NON-FERROUS METALS
Название The possibility of optimization of composition of anode smelting charge of blister copper by mathematical planning
DOI 10.17580/tsm.2017.09.05
Автор Zhukov V. P., Kholod S. I., Lisienko V. G., Lapteva A. V.
Информация об авторе

Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia:

V. P. Zhukov, Professor of a Chair of Non-Ferrous Metals Metallurgy
V. G. Lisienko, Professor of a Chair of Automation and Management in Technical Systems
A. V. Lapteva, Lecturer of a Chair of Automation and Management in Technical Systems


Technical University of UMMC, Verkhnyaya Pyshma, Russia:

S. I. Kholod, Deputy Head of a Chair of Metallurgy, e-mail: hsi503@yandex.ru

Реферат

Copper anodes are obtained during the fire refining of blister copper. The quality of these anodes depends basically on the quantity of impurities in the initial charge, and the process parameters. The aim of this work is to develop the methodology for calculating the optimal composition of the charge on the basis of the data about the chemical composition of the components produced by different smelting companies. Using the mathematical apparatus of linear programming, we developed the technological model, allowing the counting of number of loaded charging materials containing raw materials of different chemical composition with minimal amount of impurities. For example, the charge task was solved during varying quality copper refining, which justified the proportion of each type of rough metal, ensuring minimization of the weighted average composition of the impurity metals and elements. We established the adequacy of the described methodology with application of the classical method of solving of linear equation systems using Microsoft Excel to optimize the charge composition in the impurity data, because it has the only one solution.

Ключевые слова Charge, rational use, optimization methods, anode smelting, linear programming, blister copper
Библиографический список

1. Zhukov V. P., Skopov G. V., Kholod S. I. Copper pyrometallurgy. Ekaterinburg : UrO RAN, 2016. 632 p.
2. Selivanov E. N., Popov A. I., Selmenskikh N. I., Lebed A. B. Oxide inclusions in copper during its fire refining. Non-ferrous Metals. 2013. No. 2. pp. 19–22.
3. Zhukov V. P., Spitchenko S. A., Novokreshchenov S. A., Kholod S. I. Copper refining. Ekaterinburg : UrFU, 2010. 317 p.
4. Naboychenko S. S., Ageev N. G., Doroshkevich A. P. et al. Processes and appara tuses of non-ferrous metallurgy. Ekaterinburg : Izdatelstvo UrFU, 2013. 564 p.
5. Ageev N. G. Modeling of processes and objects in metallurgy. Ekaterinburg : Izdatelstvo Uralskogo Universitea, 2016. 108 p.
6. Krasnov M. L., Kiselev A. I., Makarenko G. I. еt al. All higher mathematics. Volume 6. Variation calculation, linear programming, calculus mathematics, spline theory. Moscow : Librokom, 2013. 256 p.
7. Rudyk B. M. Linear algebra. Moscow : NITs INFRA-M, 2013. 318 p.
8. Shevtsov G. S. Linear algebra: theory and applied aspects. Moscow : Magistr, NITs INFRA-M, 2013. 528 p.
9. G. Strang. Linear algebra and its applications. Moscow : Mir, 1980. 456 p.
10. David Kahaner, Cleve Moler and Stephen Nash. Numerical Methods and Software. Moscow : Mir, 1998. 575 p.
11. Lungu K. N. Linear programming. Tutorial to task solving. Moscow : Fizmatlit, 2005. 128 p.
12. Akulich I. L. Mathematical programming in examples and tasks : tutorial. Electronic data. Saint Petersburg : Lan, 2011. 352 p.
13. Brian D. Bunday. Basic linear programming. Translated from English. Moscow : Radio i svyaz, 1989. 176 p.
14. Lungu K. N., Norin V. P., Pismennyy D. T. Collection of exercises on higher mathematics. Moscow : Ayris-press, 2011. 592 p.
15. Vanderbei R. J. Linear Programming: Foundations and Extensions. Berlin : Springer, 2007. 464 p.
16. Davenport W. G., King M., Schlesinger M., Biswas A. K. Extractive metallurgy of copper. Oxford : Elsevier, 2002.
17. Zhaofeng Wang, Man Yao, Xudong Wang, Xiaobing Zhang, Longsheng Yang, Hongzhou Lu, Xiong Wang. Inverse problem-coupled heat transfer model for steel continuous casting. Journal of Materials Processing Technology. 2014. Vol. 214, No. 1. pp. 44–49.
18. Venkata Rao R., Kalyankar V. D., Waghmare G. Parameters optimization of selected casting processes using teaching-learning-based optimization algorithm. Applied Mathematical Modelling. 2014. Vol. 38, No. 23. pp. 5592–5608.
19. Huijun Feng, Lingen Chen, Zhihui Xie, Zemin Ding, Fengrui Sun. Еneralized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate. Energy. 2014. Vol. 66. pp. 991–998.
20. Vertnik R., Šarler B. Solution of a continuous casting of steel benchmark test by a meshless method. Engineering Analysis with Boundary Elements. 2014. Vol. 45. pp. 45–61.

Language of full-text русский
Полный текст статьи Получить
Назад