Журналы →  Tsvetnye Metally →  2016 →  №8 →  Назад

METAL PROCESSING
Название Influence of complex ladle modifying on the structure of aluminium ingots
DOI 10.17580/tsm.2016.08.12
Автор Merkulova S. M., Bochvar S. G.
Информация об авторе

FCS&HT “SNPO “Eleron”, Moscow, Russia:

S. M. Merkulova, Design Engineer, e-mail: sveta.merkulova.68@mail.ru

 

All-Russia Institute of Light Alloys, Moscow, Russia:
S. G. Bochvar, Leading Engineer

Реферат

Influence of ladle treatment of Al – Ti – B and Al – Ti – C systems on grain size of aluminium ingots made of A7 technical pure aluminium and A99 high pure aluminium is examined. This ladle treatment is based on usage of ultrasonic processing and modifying bars. It is shown that application of ultrasonic processing of melt flow using alloying composition with active origination particles allows to decrease essentially aluminium grain size. So, ladle treatment of A7 aluminium melt flow allowed to decrease grain size from 500 to 90 μm (grain is close to non-dendrite one). This result has been achieved during introduction of modifying bar (with composition Al – 5% Ti – 1% B, made by “Kawecki” company) in the area of developed cavitation, and with calculation of additional adding of 0.055% Ti. Investigation of A99 aluminium has displayed decrease of dendrite grain size from >2000 to 165 μm during introduction of modifying bar (with composition Al – 1.4% Ti – 0.15% C, made by VILS – All-Russian Institute of Light Alloys), without cavitation processing of melt flow, but with its ultrasonic processing. Decrease of dendrite grain size to 130 μm has been achieved during introduction of modifying bar of the same composition and with additional adding of 0.1% Ti. Introduction of additional origination nuclei from modifying bar of Al – Ti system was not finalized in such visible effect, though grain size has decreased by appr. 6 times. Complex ladle modifying of low-alloyed AD31 alloy (having no Zr in its composition) allowed to obtain non-dendrite structure with 60 μm grain average size in the ingots of 60 mm diameter. It is shown that modern ultrasonic generators can provide stable operation at industrial casting temperatures practically for all aluminium alloys. At the same time, acoustic processing parameters (such as frequency, power and amplitude) don't vary during long time comparative with casting period for industrial alloys (with diameter up to 300 mm and length up to 1.5 m). It is concluded that forming of stable cavitation area in the melt near operating ultrasonic source is possible in the case when oscillation amplitude of an oscillator exceeds 10 μm for 18–22 KHz frequency.

Ключевые слова Aluminium, casting, ultrasonic, cavitation, modifying, grain size, ladle treatment of melt
Библиографический список

1. Brodova I. G. Iskhodnye rasplavy kak osnova formirovaniya struktury i svoystv alyuminievykh splavov (Initial melts as a basis of formation of structure and properties of aluminium alloys). Ekaterinburg : Ural Branch of Russian Academy of Sciences, 2005. 369 p.
2. Getselev Z. N., Balakhontsev G. A., Kvasov F. I. et al. Nepreryvnoe lite v elektromagnitnyy kristallizator (Continuous casting in electromagnetic crystallizer). Moscow : Metallurgiya, 1983. 152 p.
3. Popov A. V., Kolosov V. M. Upravlenie sluzhebnymi svoystvami konstruktsionnykh materialov (Control of operating properties of construction materials). Sbornik nauchnykh trudov “Obrabotka i primenenie novykh konstruktsionnykh materialov” (Collection of scientific proceedings “Processing and application of new construction materials”). Kuybyshev : Kuybyshev Polytechnical Institute – Kuybyshev Aviation Institute, 1980. pp. 5–12.
4. Rokhlin L. L., Bochvar N. R., Tarytina I. E. Vliyanie skandiya sovmestno s tsirkoniem na strukturu i prochnostnye svoystva splavov na osnove sistemy Al – Mg2Si (Joint effect of scandium and zirconium on the recrystallization of aluminum Al–Mg2Si alloys). Metally = Russian metallurgy (Metally). 2015. No. 5. pp. 60–66.
5. Pengfei X., Gao B., Yanxin Z., Kaihua L., Ganfeng T. Effect of erbium on properties and microstructure of Al – Si eutectic alloy. Journal of Rare Earths. 2010. Vol. 28, No. 6. pp. 927–930.
6. Vo N. Q., Dunand D. C., Seidman D. N. Improving aging and creep resistance in a dilute Al – Sc alloy by microalloying with Si, Zr and Er. Acta Materialia. 2014. Vol. 63. pp. 73–85.
7. Van Dalen M. E., Dunand D. C., Seidman D. N. Microstructural evolution and creep properties of precipitation-strehgthened Al – 0.06Sc – 0.02Yb (at. %) alloy. Acta Materialia. 2011. Vol. 59. pp. 5224–5237.
8. Booth-Morrison C., Dunand D. C., Seidman D. N. Coarsening resistance at 400 oC of precipitation-strengthened Al – Zr – Sc – Er alloys. Acta Materialia. 2011. Vol. 59. pp. 7029–7042.
9. Filatov Yu. A. Alyuminievye splavy sistemy Al – Mg – Sc dlya kosmicheskoy tekhniki (Al – Mg – Sc System-Based Alloys for Space Equipment). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2013. No. 4. pp. 61–65.
10. Meng Yi, Zhao Zhi-Hao, Cui Jian-Zhong. Effect of minor Zr and Sc on microstructures and mechanical properties of Al – Mg – Si – Cu – Cr – V alloys. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23. pp. 1882–1889.
11. Rokhlin L. L., Bochvar N. R., Sukhanov A. V., Leonova N. P. Issledovanie kinetiki raspada peresyshchennogo tverdogo rastvora v splavakh Al – Mg2Si s dobavkami skandiya, tsirkoniya i gafniya (Decomposition kinetics of the supersaturated solid solution in Al – Mg2Si alloys with scandium, zirconium, and hafnium additions). Metally = Russian metallurgy (Metally). 2014. No. 2. pp. 67–72.
12. Zakharov V. V., Fisenko I. A. Ob ekonomii skandiya pri legirovanii im alyuminievykh splavov (On Scandium Saving in Case of Making Scandium alloying Addition to Aluminium Alloys). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2013. No. 4. pp. 52–60.
13. Zakharov V. V., Fisenko I. A. O vozmozhnosti sozdaniya ekonomnolegirovannykh skandiem alyuminievykh splavov (On the Possibility of Creation of Aluminium alloys with Minimal scandium Content). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2015. No. 4. pp. 40–44.
14. Makarov G. S. Slitki iz alyuminievykh splavov s magniem i kremniem dlya pressovaniya (Aluminium alloys ingots with magnesium and silicon for pressing). Moscow : Intermet Engineering, 2011. 528 p.
15. McKay D. J., Nunner G., Geier G. F., Schumacher P. Impurities in Al – 5Ti – B grain refiner rod. International Journal of Cast Metals Research. 2009. Vol. 22, No. 1–4. pp. 212–215.
16. Eskin G. I., Bochvar S. G. Yalfimov V. I. K voprosu o formirovanii nedendritnoy struktury v slitkakh alyuminievykh splavov (To the question about formation of non-dendritic structure in aluminium alloy ingots). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2010. No. 1. pp. 38–43.
17. Eskin G. I. K usloviyam formirovaniya nedendritnoy struktury v slitkakh i granulakh legkikh i zharoprochnykh nikelevykh splavov (On Conditions of a Nondendritic Structure Formation in Light alloy and Ni-Base Superalloy Ingots and Powders). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2013. No. 4. pp. 147–159.
18. Eskin G. I. Ultrazvukovaya obrabotka rasplavlennogo alyuminiya (Ultrasonic treatment of melted aluminium). Moscow : Metallurgiya, 1988. 232 p.

19. Eskin G. I. Ultrasonic treatment of light alloy metals. Amsterdam : Gordon-Breach Sciences Publish, 1998. 334 р.
20. GOST 11069–2001. Alyuminiy pervichnyy. Marki (State Standard 11069–2001. Primary aluminium. Grades). Introduced : January 01, 2003. (in Russian)

21. GOST 4784–97. Alyuminiy i splavy alyuminievye deformiruemye. Marki (State Standard 4784–97. Aluminium and wrought aluminium alloys. Grades). Introduced : 2000–07–01. (in Russian)
22. Bochvar S. G. Novaya kontseptsiya predelnogo izmelcheniya struktury slitkov alyuminievykh splavov v protsesse nepreryvnogo litya za schet vnepechnogo kompleksnogo modifitsirovaniya rasplava (New concept of limited grinding of structure of aluminium alloy ingots in the process of continuous casting due to the outer-furnace complex modification of melt). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2011. No. 1. pp. 12–21.
23. Eskin G. I., Rukhman A. A., Bochvar S. G., Yalfimov V. I., Konovalov D. V. Novoe v tekhnike ultrazvukovoy obrabotki rasplava legkikh splavov (New in the technics of ultrasonic treatment of light alloys melt). Tsvetnye Metally = Non-ferrous metals. 2008. No. 3. pp. 105–110.

Language of full-text русский
Полный текст статьи Получить
Назад