Журналы →  Tsvetnye Metally →  2014 →  №12 →  Назад

GASES IN METALS
Название Choice of design parameters for modeling of energy of vacancy defects and hydrogen formation in tungsten
Автор Fedina M. A., Ganchenkova M. G.
Информация об авторе

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia:

M. A. Fedina, Engineer, e-mail: zara.91@mail.ru

 

Aalto University School of Science, Espoo, Finland:
M. G. Ganchenkova, Assistant Professor1, Visiting Researcher

Реферат

The values of energy parameters of point defects in tungsten, forecasted by numerous published first-principle calculations, have a noticeable spread, causing an appropriate doubt in their reliability. Incorrect selection of calculation parameters can be only one possible reason for this situation. This inaccuracy leads to further errors in the study of microstructure evolution under the influence of different factors, such as in current urgent problem of tungsten behavior studying, when it will be used as the material for ITER divertor. On the example of the simplest point defects (mono- and divacancy, hydrogen atom), there was carried out a systematic study of the sensitivity of calculated energy parameters of defects to the choice of basic calculation parameters. On the basis of the potential energy calculations, there were found such ideal crystal parameters as lattice parameter, bulk modulus, vacancy formation energy, divacancy formation energy, and solution energy of hydrogen atoms in tetrahedral and octahedral sites. The carried out research has shown that provision of reasonable accuracy of the calculations for tungsten sets rather severe restrictions on minimum allowable values of calculation input parameters, such as choice for integration mesh of first Brillouin zone, and choice of supercell size, which was not observed in many earlier published works. According to this, detailed preliminary convergence tests of acceptable accuracy of calculation results become more significant.

Ключевые слова Tungsten, vacancy, divacancy, hydrogen, formation energy, density functional theory, simulation, convergence
Библиографический список

1. Marinica M.-C., Ventelon L., Gilbert M. R. Interatomic potentials for modeling radiation defects and dislocations in tungsten. Journal of physics: condensed matter. 2013. Vol. 25. pp. 1–15.
2. Heinola K., Ahlgren T., Nordlund K. Hydrogen interaction with point defects in tungsten. Physical review. 2010. B. 82. pp. 094102-1–094102-5.
3. Kon V. Elektronnaya struktura veshchestva — volnovye funktsii i funktsionaly plotnosti (Electronic structure of substance — wave functions and functional density). Uspekhi fizicheskikh nauk = Advances in Physical Sciences. 2002. Vol. 172, No. 3. pp. 336–348.
4. Ventelon L., Willaime F., Chu-Chun Fu. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specicity of di-vacancies compared to other bcc transition metals. Journal of Nuclear Materials. 2012. Vol. 425. pp. 16–21.
5. Kato D., Iwakiri H., Morishita K. First-principle Study on Binding Energy of Vacancy-Hydrogen Cluster in Tungsten. Journal of Plasma Fusion Researches. 2009. Vol. 8. pp. 404–407.
6. Nguyen-Manh D., Horsfield A. P., Dudarev S. L. Self-interstitial atom defects in bcc transition metals: Group-specic trends. Physical Review. 2006. B. 73. pp. 020101-1–020101-4.
7. Carling K., Wahnström G., Mattsson T. R. Vacancies in metals: from firstprinciples calculations to experimental data. Physical Review Letters. 2000. Vol. 85. pp. 3862–3865.
8. Yi-Nan Liu, Ahlgren T., Bukonte L. Mechanism of vacancy formation induced by hydrogen in tungsten. AIP Advances. 2013. Vol. 3, Iss. 12. pp. 122111-1–122111-12.
9. Johnson D. F. Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion. Journal of Material Researches. 2010. Vol. 25, No. 2. pp. 315–327.
10. Hong-Bo Zhou, Shuo Jin, Ying Zhang. Anisotropic Strain Enhanced Hydrogen Solubility in bcc Metals: The Independence on the Sign of Strain. Physical Review Letters. 2012. Vol. 109. pp. 135502-1–135502-5.
11. Effenberg G. Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology: Refractory Metal Systems. Berlin : Springer Verlag, 1991. Vol. 11. pp. 1–13.

Language of full-text русский
Полный текст статьи Получить
Назад