Журналы →  Tsvetnye Metally →  2014 →  №4 →  Назад

The 115-th anniversary of Saint Petersburg Polytechnical University
Название Specifics of structure formation of welded joints during laser welding of dissimilar materials of Al – Cu and Al – Ti systems
Автор Turichin G. A., Klimova O. G., Babkin K. D.
Информация об авторе

Saint Petersburg State Polytechnical University, Saint Petersburg, Russia:

Turichin G. A., Professor
Klimova O. G., Assistant, e-mail: o.klimova@ltc.ru
Babkin K. D., Engineer

Реферат

Specifics of laser welding of such dissimilar materials as aluminum alloys, titanium-based and copper-based alloys are considered in this paper. Using the specialized software LaserCad for welding dissimilar materials, the simulation results of the welding process (using high-fiber power lasers), are given together with following innovations in existing model: infl uence of thermophysical properties of alloys; welding speed; distance from the beam motion line to junction of materials and laser power on formation of temperature fi elds. Microstructure of weld seam for these systems is researched. Chemical composition of diffusion zone is defi ned using scanning electron microscopy. Absence of unacceptable defects in weld seam (large pores, hot cracks) is shown using metallographic analysis. Existence of thin interlayers (less than 3 μm) with variable chemical composition demonstrates absence of continuous intermetallic layers in both systems. Thickness of transition zone composed 15–20 μm for aluminum-titanium system and 15–30 μm for aluminum-copper system. Comparison between calculated data of modifi ed model of weld seam formation and laser welding experimental data of Al – Ti and Al – Cu systems showed good coinciding. Possibility of usage of laser technology for welding of dissimilar materials is demonstrated experimentally. There are shown the preconditions for usage of laser welding of dissimilar materials in aluminum-copper and aluminum-titanium systems in industry.

Ключевые слова Laser welding, dissimilar materials, mass and heat transfer, thermal conductivity, aluminum alloys, titanium, copper, diffusion, chemical composition
Библиографический список

1. Ryabov V. R., Rabkin D. M. Svarka raznorodnykh materialov (Welding of heterogeneous materials). Moscow : Mashinostroenie, 1984. 239 p.
2. Majumdar B., Galun R., Weisheit A., Mordike B. L. Formation of a crackfree joint between Ti alloy and Al alloy by using a high-power CO2 laser. Journal of Materials Science. 1997. No 12, Vol. 32, Iss. 23. p. 6191– 6200.
3. Yao C., Xu B., Zhang X., Huang J., Fu J., Wu Y. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint. Optics and Lasers in Engineering. 2009. Vol. 47, Iss. 7/8. pp. 807–814.
4. Katayama S., Joo S. M., Mizutani M., Bang H. S. Laser weldability of aluminum alloy and steel. Materials Science Forum. 2005. Vol. 502. pp. 481–486.
5. Durgutlua A., Gülença B., Findik F. Examination of copper/stainless steel joints formed by explosive welding. Materials & Design. 2005. Vol. 26, Iss. 6. pp. 497–507.
6. Shiri S. G., Nazarzadeh M., Sharifi tabar M., Afarani M. S. Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials. Transactions of Nonferrous Metals Society of China. 2012. Vol. 22. pp. 2937−2942.
7. Imani Y., Besharati Givi M. K., Guillot M. Improving Friction Stir Welding between Copper and 304L Stainless Steel. Advanced Materials Research. 2011. Vol. 409. pp. 263–268.
8. Mazar Atabaki M., Noor Wati J., Bteidris J. Transient liquid phase diffusion bonding of stainless steel 304. Metallurgical Materials Engineering. 2012. Vol. 18 (3). pp. 177–186.
9. Magnabosco I., Ferro P., Bonollo F., Arnberg L. An investigation of fusion zone microstructures in electron beam welding of copperstainless steel. Materials Science and Engineering: A. 2006. Vol. 424, Iss. 1/2. pp. 163–173.
10. Klimova O. G., Turichin G. A., Lopota V. A., Shamshurin A. I., Sizova I. A. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta — Saint Petersburg State Polytechnical University Journal. 2013. No. 2. pp. 125–132.
11. Turichin G. A., Klimova O. G., Babkin K. D., Pevzner Ya. B. Metal Science and Heat Treatment. 2013. Vol. 55, Iss. 9–10. pp. 569–574.
12. Turichin G. A., Valdaytseva E. A., Tsibulskiy I. A. Fotonika — Photonika. 2008. No. 6. pp. 18–20.
13. Lopota V. A., Turichin G. A., Valdaytseva E. A., Diltey U., Gumenyuk A. Izvestiya vuzov. Priborostroenie — Proceedings of Universities. Instrument making. 2004. Vol. 47. pp. 39–44.
14. Bannykh O. A., Budberg P. B., Alisova S. P. et al. Diagrammy sostoyaniya dvoynykh i mnogokomponentnykh sistem na osnove zheleza (Constitution diagrams of double and multicomponent iron-based systems). Moscow : Metallurgiya, 1986. 440 p.
15. Mishin Y., Herzig Chr. Diffusion in Al – Ti system. Acta Materialia. 2000. Vol. 48, Iss. 3. pp. 589–623.
16. Bang H., Bang H., Song H., Joo S. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti – 6% Al – 4% V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Materials & Design. 2013. Vol. 51. pp. 544–551.
17. Chen S., Li L., Chen Y., Dai J., Huang J. Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium. Materials & Design. 2011. Vol. 32. pp. 4408–4416.
18. Tan C. W., Jiang Z. G., Li L. Q., Chen Y. B., Chen X. Y. Microstructural evolution and mechanical properties of dissimilar Al – Cu joints produced by friction stir welding. Materials & Design. 2013. Vol. 51. pp. 466-473.

Language of full-text русский
Полный текст статьи Получить
Назад