Журналы →  Tsvetnye Metally →  2013 →  №9 →  Назад

TO THE 100-th ANNIVERSARY OF ACADEMICAN I. N. FRIDLYANDER
Название Influence of the grain size on the complex of properties of lagging clad cold-rolled sheets made of the basic 1163 and V95pch (В95пч) alloys
Автор Tkachenko E. A., Senatorova O. G., Milevskaya T. V., Ivanov A. L.
Информация об авторе

All-Russian Scientific Research Institute of Aviation Materials “VIAM”, Moscow, Russia

E. A. Tkachenko, Head of Department, e-mail: admin@viam.ru
O. G. Senatorova, Head of Department
T. V. Milevskaya, Engineer
A. L. Ivanov, First Category Engineer

Реферат

There was investigated the influence of grain structure (average grain size from 40 to 400 μm) on mechanical, corrosion and technological properties, fracture toughness and fatigue life of clad sheets made of basic aluminum alloys of V95pch (В95пч) grade (T1, T2, М tempers) and 1163 grade (T, М tempers). The distinctive feature of this study is obtaining of used sheets with different grain size from the alloys of the same casting and rolling group. Influence of all other factors on the sheet properties (except the grain size) was minimized because of this obtaining. For the purpose of this study, there was used a group of plated cold rolled sheets (2–3 mm thickness) with a grain size (at the rolling plane) of the substrate sheet in the range of 40–400 μm. Sheets were manufactured by the serial process technology at the production conditions of “Kamensk Uralsky Metallurgical Works” JSC (“KUMZ” JSC) (V95pch alloy) and “Stupino Metallurgical Company” JSC (1163 alloy). For the purpose of obtaining of sheets with different grain size, the initial party of sheets made of V95pch alloy and 1163 alloy were annealed by the serial regime and special regimes with longer shutter speeds and lower heating and cooling speeds. The obtained experimental dependences of complex of mechanical, corrosion and technological properties of lagging clad cold-rolled sheets made of V95pch and 1163 alloys from the grain size make it possible to clarify the requirements of normative documentation of the permissible average grain size (not more than 200 μm). The requirements provide the necessary level of properties, which increases the reliability and resource during the exploitation of parts of cladding of modern and prospective aircrafts (SSJ, TU204SM, MS-21 etc.) due to increasing of stability of level of the service characteristics of clad sheets.

Ключевые слова Cold-rolled clad sheets, V95pch (В95пч) and 1163 aluminium alloys, grain size, mechanical, corrosion and technological properties, fracture toughness, fatigue life
Библиографический список

1. Fridlyander I. N., Berstenev V. V., Tkachenko E. A., Goloviznina G. M., Latushkina L. V., Lantsova L. P. Metallovedenie i termicheskaya obrabotka metallov — Metal Science and Heat Treatment. 2003. No. 7. pp. 3–6.
2. Ponagaybo Yu. N. Krupnokristallicheskaya struktura v plakiruyushchem sloe alyuminievykh obshivochnykh listov (Large-crystallic structure in clad layer of aluminium lagging sheets). Deformiruemye alyuminievye splavy (Deformed aluminium alloys). Moscow : Oborongiz, 1961. pp. 44–53.
3. Senatorova O. G., Ryazanova N. A., Kopnov V. I. et al. Zerennaya struktura i svoystva listov iz splava V95 (Grain structure and properties of sheets made of V95 (В95) alloy). Metallovedenie legkikh splavov (Metal science of light alloys). 1985. pp. 93–98.
4. Shilova E. I., Nikitaeva O. G. Vliyanie razmera zerna na svoystva listov iz splavov AK4-1 i D16 (Influence of grain size on the properties of sheets made of AK4-1 (АК4-1) and D16 (Д16)) alloys). Metallovedenie legkikh splavov (Metal science of light alloys). 1970. pp. 33–37.
5. Lutjering G., Hamajima T., Gysler A. Influence of Grain Size on the Fracture of Aluminum Alloys, In Proceedings : Fracture. ICF4. Canada. 1977. Vol. 2. pp. 7–16.
6. Alyuminievye splavy. Struktura i svoystva polufabrikatov iz alyuminievykh splavov : spravochnik (Aluminium alloys. Structure and properties of semi-finished products made of aluminium alloys : reference book). Moscow : Metallurgiya, 1974, 432 p.
7. Kvasov F. I., Fridlyander I. N. Alyuminievye splavy tipa duralyumin (Aluminium alloys of duralumin type). Moscow : Metallurgiya, 1984. 240 p.
8. Turchenkov V. A., Baranov D. E., Gagarin-Shishkin M. D. Aviatsionnye materialy i tekhnologii — Aviation materials and technologies. 2012. No. 1. pp. 47–53.

9. Erasov V. S., Grinevich A. V., Sennik V. Ya., Konovalov V. V. et al. Aviatsionnye materialy i tekhnologii — Aviation materials and technologies. 2012. No. 2. pp. 14–16.
10. Erasov V. S., Nuzhnyy G. A. Aviatsionnye materialy i tekhnologii — Aviation materials and technologies. 2011. No. 4. pp. 35–40.
11. Kishkina S. I. Soprotivlenie razrusheniyu alyuminievykh splavov (Resistance to destruction of aluminium alloys). Moscow : Metallurgiya, 1981. 279 p.
12. OST 1-90070–92. Listy obshivochnye iz alyuminievykh splavov. Tekhnicheskie usloviya (Industrial Standard 1-90070–92. Lagging sheets made of aluminium alloys. Technical conditions). Introduced : 1992-10-01.
13. Kablov E. N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda (Strategic directions of development of materials and technologies of their processing for the period till 2030). Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik. Prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii” (Aviation materials and technologies : anniversary scientific and technical collection. Application to the journal “Aviation materials and technologies”). Moscow : VIAM. 2012. pp. 7–17.
14. Tarasov Yu. M., Antipov V. V. Aviatsionnye materialy i tekhnologii — Aviation materials and technologies. 2012. No. 2. pp. 10–17.
15. Antipov V. V., Senatorova O. G., Tkachenko E. A., Vakhromov R. O. Alyuminievye deformiruemye splavy (Aluminium wrought alloys). Aviatsionnye materialy i tekhnologii : yubileynyy nauchnotekhnicheskiy sbornik. Prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii” (Aviation materials and technologies : anniversary scientific and technical collection. Application to the journal “Aviation materials and technologies”). Moscow : VIAM, 2012. pp. 167–182.

Language of full-text русский
Полный текст статьи Получить
Назад