Журналы →  Chernye Metally →  2020 →  №12 →  Назад

Rolling and Other Metal Forming Processes
Название Methodology for managing quality indicators of hardware products with elements of robust design
DOI 10.17580/chm.2020.12.05
Автор K. G. Pivovarova, A. G. Korchunov
Информация об авторе

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

K. G. Pivovarova, Cand. Eng., Associate Prof., Dept. of Materials Processing Technologies, E-mail: k.pivovarova@magtu.ru
A. G. Korchunov, Dr. Eng., Prof., Head of Dept. of Design and Operation of Metallurgical Machines and Equipment, E-mail: international@magtu.ru

Реферат

Production of metalware is characterized with a great variety of shapes and sizes, originality of each product and a multiple-stage process. Various techniques used to process steel sections (such as cold and hot forming, machining, heat treatment, etc.) make it significantly more difficult to tackle product quality problems. Modern product quality management methodologies are based on a wide use of economical, organizational, technical and other methods. This paper describes a production-related quality control method involving certain elements of robust design. This method is based on the definition of noise factors and control parameters, as well as the conduction of noise and principal experiments. The noise experiment will help estimate the impact of disturbing factors (environmental or industrial) on product quality indicators, whereas the principal experiment will help identify the optimum production mode that can deliver the best quality and, at the same time, minimize the production losses. Robust design techniques can be effectively utilized to control the quality of metalware when developing new and optimizing the existing processes. The paper gives an example of how the quality of S10S steel bars can be controlled through the application of efficient production modes enabling to minimize quality-related costs.

Ключевые слова Quality management, metalware industry, gauged bars, robust design, robustness, uncertainty, quality loss function
Библиографический список

1. Korchunov A. G., Chukin M. V., Gun G. S., Polyakova M. A. Product quality management in hardware production technologies. Moscow: Izdatelskiy dom “Ruda i Metally”, 2012. 164 p.
2. Kharitonov V. А., Gallyamov D. E. New modular combined steel wire production method. Chernye Metally. 2019. No. 2. pp. 42–48.
3. Gun G. S., Pivovarova K. G., Sokolov A. A., Tokareva N. V. Improvement of production of billet rods of metallic shell of automatic spark plug for rising usability of finished products. CIS Iron and Steel Review. 2019. Vol. 18. pp. 35–37.
4. Plotnikova I. V., Redko L. А. Statistical methods and analysis of quality management problems. Standarty i kachestvo. 2017. No. 3. pp. 50–53.
5. Klyachkin V. N. Statistical methods in quality management. Computer techologies. Moscow: Finansy i statistika, 2009. 304 p.
6. Chukin M. V., Rashnikov S. F., Shcherbo Yu. А., Sitnikov I. V. Optimization of deformation processes of laminated materials under conditions of mathematical uncertainty. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2005. No. 3. pp. 62–65.
7. Chukin M. V., Korchunov А. G., Polyakova М. А., Lysenin А. V., Gulin А. Е. Development of a criterion assessment of the effectiveness of processes of severe plastic deformation of structural carbon steels. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2015. Vol. 56. No. 2. pp. 46–51.
8. Korchunov А. G. Quality management of hardware products based on fuzzy models for describing technological heredity. Metallurg. 2009. No. 5. pp. 50–53.
9. Kirin Yu. P., Kiryanov V. V. Robust control of technological processes of titanium sponge production. Nauchno-tekhnicheskiy vestnik Povolzhya. 2016. No. 2. pp. 120–123.
10. Masenkov E. V., Belov D. B. Analysis of the water supply loss function using the Taguchi methodology. Quality in production and socio-economic systems: proceedings of the IV International scientific and technical conference. Kursk. 2016. pp. 242–246.
11. Stepanov S. L., Stepanova А. S. Technologies INDUSTRY 4.0, SOCIETY 5.0, SMART MANUFACTURING with robust control systems. XIII All-Russia meeting on management problems (VSPU-2019): proceedings. Moscow: IPU RAN. 2019. pp. 1819–1824.
12. Feng S., Tesi P. Resilient control under denial-of-service: Robust design. 2016 American Control Conference (ACC). Boston Marriott Copley Place July 6-8. 2016. Boston. MA. USA. pp. 4737–4742.
13. Bertsimas D., Gupta V., Kallus N. Data-driven robust optimization. Math. Program. Ser. A. 2018. Vol. 167. pp. 235–292.
14. Zhu J. G., Lei G., Guo Y. G., Wang T. S. et al. A robust design optimization method for manufacturing SMC-PMSMs and drive systems of six sigma quality. 2017 7th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA). 2018.
15. Gazijahani F. S., Salehi J. Robust design of microgrids with reconfigurable topology under severe uncertainty. IEEE Transactions on Sustainable Energy. 2018. Vol. 9, Iss. 2. pp. 559–569.
16. Chernova Yu. K., Shchipanov V. V. The first steps of robust design in the domestic automotive industry. Izvestiya Tomskogo politekhnicheskogo universiteta. 2006. Vol. 309. No. 5. pp. 193–197.
17. Leon R., Shumeyker А., Kakar R. et. al. Quality control. Robust design. Taguchi method. Moscow: Seyfi, 2002. 384 p.
18. Varzhapetyan А. G. Modern quality management tools. Robust design: tutorial. St. Petersburg: GUAP, 2008. p. 172.

Language of full-text русский
Полный текст статьи Получить
Назад