Журналы →  Tsvetnye Metally →  2020 →  №12 →  Назад

INSTITUTE GIPRONICKEL LLC. COURSE FOR TRANSFORMATION
MINING, GEOLOGY AND BENEFICATION
Название Use of numerical modelling to determine optimum overcoring parameters in rock stress-strain state analysis
DOI 10.17580/tsm.2020.12.03
Автор Trofimov A. V., Kirkin A. P., Rumyantsev A. E., Yavarov A. V.
Информация об авторе

Gipronikel Institute LLC, Saint Petersburg, Russia:

A. V. Trofimov, Head of the Centre, Candidate of Technical Sciences, e-mail: trofimovav@nornik.ru
A. P. Kirkin, Junior Researcher, e-mail: alexkirkin2011@gmail.com
A. E. Rumyantsev, Lead Researcher, Candidate of Technical Sciences, e-mail: rumyantsevae@nornik.ru

 

Gipronikel Institute LLC, Saint Petersburg, Russia1 ; Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia2:
A. V. Yavarov, Lead Researcher1, Assistant Professor2, Candidate of Technical Sciences, e-mail: yavarovav@nornik.ru

Реферат

Before a mineral deposit can be developed deeper, a geomechanical survey should be carried out to determine the stress tensor of the rock mass. The most common in situ stress measurement techniques include the methods of hydraulic fracturing and overcoring. Each of them has its advantages and its drawbacks. The authors of this paper propose to conduct two stages of numerical modelling in order to enhance the efficiency of measurements performed by overcoring method. The first stage involves building a model of drilling to determine the optimum drilling depth. At the second stage, a core drilling model is built. Absolute transverse strains have been determined in reference points of a pilot borehole at each stage of core drilling. The created simulation models help choose the drilling depth of coaxial boreholes, estimate the potential growth of plastic strains that cause core destruction, define the amount of overdrilling to be done to coaxial boreholes and determine the optimum location for the measurement tools. The developed models can also be used to determine stresses by inverse problem solving.

Ключевые слова Stress-strain state, measurement of the stress-strain state, overcoring method, numerical modelling, CAE Fidesys, geomechanical survey, finite element method
Библиографический список

1. Stavrogin A. N., Protosenya A. G. Rock deformation and rock destruction mechanics. Moscow : Nedra, 1992. 222 p.
2. Baklashov I. V., Kartoziya B. A., Shashenko A. N., Borisov V. N. Geomechanics. Vol. 2. Geomechanical processes. Moscow : Izdatelstvo Moskovskogo gosudarstvennogo gornogo universiteta, 2004. 249 p.
3. Shashenko A. N., Pustovoytenko V. P., Sdvizhkova E. A. Geomechanics. Kiev : Natsionalnyi gornyi universitet, 2015. 563 p.
4. Ljunggren C., Yanting Chang, Janson T., Christiansson R. An overview of rock stress measurement methods. International Journal of Rock Mechanics and Mining Sciences. 2003. No. 40. pp. 975–989.
5. Leontiev A. V. An overview of instrument-monitored data on stresses in the rock mass of the Tashtagol deposit. Problemy nedropolzovaniya. 2018. No. 3. pp. 44–52.
6. Semenova I. E., Zemtsovskiy A. V., Pavlov D. A. A comprehensive geomechanical survey of the rock mass of a hazardous deposit “Oleniy ruchey”
conducted during underground mining operations. Gornyy informatsionnoanaliticheskiy byulleten. 2014. No. 4. pp. 46–55.
7. Sergunin M. P., Eremenko V. A. Determining the initial stress field parameters of the Zapolyarnyi mine. Gornyy informatsionno-analiticheskiy byulleten. 2019. No. 4. pp. 63–74.
8. Gray I. Effective stress in rock. Proceedings of the Eighth International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth. 2017. pp. 199–207.
9. Gray I. Stress in the ground. Drilling for geology II extended abstracts. Brisbane, Australia, 26–28 July 2017. Bulletin No. 64. pp. 157–175.
10. Gischig V. S., Doetsch J., Maurer H., Krietsch H. et al. On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity. Solid Earth. 2018. No. 9. pp. 39–61.
11. Subrahmanyam D. S. Evaluation of hydraulic fracturing and overcoring methods to compare the in situ stress parameters in porous rock mass. Geotechnical and Geological Engineering. 2019. Vol. 37, Iss. 6. pp. 4777– 4787.
12. Li P., Cai M.-F., Guo Q.-F., Miao S.-J. In situ stress state of the northwest region of the Jiaodong Peninsula, China from overcoring stress measurements in three gold mines. Rock Mechanics and Rock Engineering. 2019. Vol. 52, Iss. 11. pp. 4497–4507.
13. Li Y., Fu S., Qiao L., Liu Z. et al. Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress. Measurement in Depth, Rock Mechanics and Rock Engineering. 2019. Vol. 5, Iss. 4. pp. 1115–1131.
14. Li Y., Qiao L., Miao S. J., Sui Z. L. Application of three measurement methods for determination of in-situ stress state in Qianan area. Rock Mechanics: Achievements and Ambitions Proceedings of the 2nd ISRM International Young Scholars’ Symposium on Rock Mechanics. 2012. pp. 959– 962.
15. Kurlenya M. V., Leontiev A. V. Method for determining stresses in sedimentary rock mass. Patent USSR, No. 368402. Published: 1973.01.26.
16. Guidelines on the application of overcoring method for rock stress measurements. Academy of Sciences of the USSR. Siberian Branch. Mining institute. Novosibirsk, 1969. 62 p.
17. Grebenkin S. S., Pavlysh V. N., Petrenko Yu. A., Samoylov V. L. Control over rock mass state. Donetsk : DonNTU, 2010. 193 p.
18. Melnikov D. N. Use of overcoring method (end option) for rock stress measurement at the Zhdanov deposit. Vestnik Kolskogo nauchnogo tsentra RAN. 2019. No. 1. pp. 57–61.
19. Samsonov A. A. Evaluating the rock state of a hazardous deposit “Oleniy ruchey” based on stress measurement data. Vestnik Kolskogo nauchnogo tsentra RAN. 2019. No. 1. pp. 62–67.
20. Kozyrev A. A., Rybin V. V., Konstantinov K. N. Using a combination of instrumental methods to evaluate the geomechanical state of perimeter flank rock mass. Gornyy informatsionno-analiticheskiy byulleten. 2012. No. 10. pp. 113–119.
21. ASTM D4623–2016. Standard test method for determination of in situ stress in rock mass by overcoring method — three component borehole deformation gauge. Published : December 2016.
22. Fadeev A. B. Finite element method in geomechanics. Moscow : Nedra, 1987. 221 p.
23. Gospodarikov A. P., Zatsepin M. A. Mathematical modelling of nonlinear boundary-value problems of geomechanics. Gornyi Zhurnal. 2019. No. 12. pp. 16–20.
24. Trushko V. L., Gospodarikov A. P., Sozonov K. V. Stress-strain state calculations done for the ore and filling masses of the Yakovlev iron ore deposit. Gornyy informatsionno-analiticheskiy byulleten. 2019. No. 5. pp. 111–123.
25. Jing L., Hudson J. A. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences. 2002. Vol. 39. pp. 409– 427.
26. Bobet A. Numerical methods in geomechanics. Arabian Journal For Science and Engineering. 2010. Vol. 35. pp. 27–48.
27. Krietsch H., Gischig V., Evans K., Doetsch J. et al. Stress measurement for an in situ stimulation experiment in crystalline rock. Integration of Induced Seismicity, Stress Relief and Hydraulic Methods, Rock Mechanics and Rock Engineering. 2019. Vol. 52, Iss. 2. pp. 517–542.
28. Trinh N. Q., Holmoy K. H., Larsen T., Myrvang A. Continued rock stress and displacement measurements combined with numerical modeling as an active, realistic rock engineering tool. ISRM International Symposium on In-Situ Rock Stress, ISRS. 2016. pp. 181–193.
29. Sonnov M. A., Rumyantsev A. E., Trofimov A. V., Vilchinskiy V. B. Numerical modelling of the changing stress-strain state of a developed deposit in CAE Fidesys using a step-by-step calculation option. Gornaya promyshlennost. 2020. No. 2. pp. 112–116.
30. Latyshev O. G., Kornilkov M. V. Use of surface active agents to modify the fractal characteristics, properties and state of rocks in mining operations. Yekaterinburg : Izdatelstvo UGGU, 2016. 407 p.
31. Sinev S. V. Flat cracking of rocks. Structural Mechanics of Engineering Constructions and Buildings. 2011. No. 4. pp. 63–70.

Language of full-text русский
Полный текст статьи Получить
Назад