Journals →  Obogashchenie Rud →  2020 →  #5 →  Back

BENEFICIATION PROCESSES
ArticleName Laser-photometric lump separation of gold-bearing ore
DOI 10.17580/or.2020.05.03
ArticleAuthor Rassulov V. A., Nerushchenko E. V.
ArticleAuthorData

All-Russian Scientific-Research Institute of Mineral Resources named after N. M. Fedorovsky (Moscow, Russia):

Rassulov V. A., Senior Researcher, Candidate of Geological and Mineralogical Sciences, rassulov@mail.ru

 

Research and Production Enterprise GeoTestService (Moscow, Russia):
Nerushchenko E. V., Head of Department, nevkimi@yandex.ru

Abstract

This paper establishes the conditions for selecting the optimal lump separation method based on the values of indicator properties of the ore minerals and demonstrates respective pilot testing results for low-grade quartz-type sulfide gold-bearing ores. The studies have shown the high efficiency of laser-photometric processing of ores with low contents of finely disseminated ore components, for which other methods are ineffective. On the example of ore from the Natalka deposit, it has been shown that acceptable lump separation performance requires division of the original ore into high-grade balance ore (the separation of which would be impractical), low-grade balance ore (to be subjected to lump separation), and an off-balance mineralized mass. Lump processing remains efficient up to ore temperatures of minus 15 °C, if rinsed with 4 °C water. The following concentration indicators were achieved for the lean ore of the process sample taken from the Alternativny section at ore temperatures above minus 15 °С: with the concentrate yield of 20 to 28 %, the gold content increases by 3.0–4.5, with an average level of metal losses in the tailings of approximately 13 %. At ore temperatures down to minus 21 °C, when an opaque ice film with the thickness of over 1 mm is formed on the lump during its screening with washing, metal losses in the separation tailings become 2.0–2.5 times higher.

The authors are grateful to the employees of TOMRA, CC of CJSC Polyus Zoloto, Natalka FMS department of OJSC RiM, and FSBI VIMS, who assisted in the pre-concentration technology testing for the ore of the Natalka deposit.

keywords Gold ore deposit, ore, preliminary concentration, laser-photometric method, lump separation, classification, defrosting
References

1. Robben C., Wotruba H. Sensor-based ore sorting technology in mining — past, present and future. Minerals. 2019. Vol. 9, Iss. 9. DOI: 10.3390/min9090523.
2. Von Ketelhodt L., Bergmann C. Dual energy X-ray transmission sorting of coal. Journal of the Southern African Institute of Mining and Metallurgy. 2010. Vol. 110. pp. 371–378.
3. Olschlegel J.-K., Rassulov V. A., Nerushchenko E. V. Pre-enrichment of gold-quartz type ore by X-ray absorption method on the separator «Mogensen». Zoloto i Tekhnologii. 2017. No. 2. pp. 46–49.
4. Fedorov A. Yu., Potapov V. Ya., Potapov V. V. X-ray radiometric separators for mineral and technogenic raw materials beneficiation. Gornoye Oborudovanie i Elektromekhanika. 2006. No. 8. pp. 18–20.
5. Potapov V. Ya., Tsypin E. F., Potapov V. V., Franyuk E. Е. Algorithm of decision-making on pieces removal in photometric separation. Vestnik Zabaykalskogo Gosudarstvennogo Universiteta. 2018. Vol. 24, No. 1. pp. 34–40.
6. Romanchuk A. I., Tikhvinsky A. V., Zharkov V. V., Bogomolov V. A. Photometric separation of different kind gold ore. Gorny Informatsionno-analiticheskiy Byulleten'. 2013. No. 2. pp. 109–113.
7. Phiri T., Glass H. J., Mwamba P. Development of a strategy and interpretation of the NIR spectra for application in automated sorting. Minerals Engineering. 2018. Vol. 127. pp. 224–231.
8. Photometric sorting of gold reef. Mining Magazine. 1974. No. 5. p. 402.
9. Mokrousov V. A., Lileev V. A. Radiometric beneficiation of non-radioactive ores. Moscow: Nedra, 1979. 192 p.
10. Nienhaus K., Pretz T., Wotruba H. Sensor technologies: impluses for the raw materials industry. Aachen: Shaker Verlag, 2014.
11. Robben M. R., Knapp H., Dehler M., Wotruba H. X-ray transmission sorting of tungsten ore. OCM 2013: Conf. proc. Karlsruhe, Germany, March 6–7, 2013. pp. 245–258.
12. Neubert K., Wotruba H. Investigations on the detectability of rare-earth minerals using dual-energy X-ray transmission sorting. Journal of Sustainable Metallurgy. 2016. Vol. 3, Iss. 1. pp. 3–12.
13. Winkler C. Petrographische und geochemische charakterisierung der nebengesteinsalteration im unmittel-baren kontakt zum Hammerlein skarn: BSc. thesis. Technical University Bergakademie Freiberg. 2017. p. 71.
14. Mironov V. P. Diamonds X-ray luminescent separation efficiency increase through spectrum filtering. Obogashchenie Rud. 2017. No. 2. pp. 32–36. DOI: 10.17580/or.2017.02.06.
15. Iyakwari S., Glass H. J., Kowalczuk P. B. Potential for near infrared sensor-based sorting of hydrothermally-formed minerals. Journal of Near Infrared Spectroscopy. 2013. Vol. 21, Iss. 3. pp. 223–229.
16. Dalm M., Buxton M. W. N., van Ruitenbeek F. J. A. Discriminating ore and waste in a porphyry copper deposit using short-wavelength infrared (SWIR) hyperspectral imagery. Minerals Engineering. 2017. Vol. 105. pp. 10–18.
17. Sanakulov K. S., Rudnev S. V. Complex of X-ray radiometric beneficiation of Kokpatas deposit sulfide ores. Gorny Vestnik Uzbekistana. 2010. No. 1. pp. 3–6.
18. Nadolski S., Samuels M., Klein B., Hart C. J. R. Evaluation of bulk and particle sensor-based sorting systems for the New Afton block caving operation. Minerals Engineering. 2018. Vol. 121. pp. 169–179.
19. Vaisberg L. А., Ustinov I. D. Introduction to mineral separation technology. St. Petersburg: Russkaya Kollektsiya, 2019. 168 p.
20. Riedel F., Dehler M. Recovery of unliberated diamonds by X-ray transmission sorting. Diamonds – Source to use 2010: Conf. proc. Gaborone, Botswana. March 1–3, 2010. pp. 193–199.
21. Fandrich R., Gu Y., Burrows D., Moeller, K. Modern SEM-based mineral liberation analysis. International Journal of Mineral Processing. 2007. Vol. 84, Iss. 1–4. pp. 310–320.
22. Vaisberg L. А., Kononov O. V., Ustinov I. D. The basics of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 368 p.
23. Goncharov V. I., Voroshin S. V., Sidorov V. A. Natalka gold ore deposit. Magadan: SVKNII FEB RAS, 2002. 250 p.
24. Goryachev N. A., Vikentyeva О. V., Bortnikov N. S., Prokofyev V. Yu., Alpatov V. А., Golub V. N. The world-class Natalka gold deposit, northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore. Geologiya Rudnykh Mestorozhdeniy. 2008. Vol. 50, No. 5. pp. 414–444.
25. Golubev S. Yu. Conditions of localization of ore bodies of the Natalka gold deposit. Rudy i Metally. 2008. No. 6. pp. 72–76.
26. Bortnikov N. S., Goryachev N. A. Natalka gold deposit — giant orogenic Au deposit of North East Asia. Giant ore deposits Down–Under: Proc. of the 13th Quadrennial IAGOD symp. Adelaide, South Australia, 6–9 April 2010. Chap. 12. p. 223. (CD).
27. Goryachev N. A., Sotskaya О. Т., Mikhalitsina Т. I., Goryacheva Е. М., Men'shin А. P. Estimation of Au–Pt–Pd–Ni in ores of typical deposits (Natalka, Degdekan) in black shale strata of the Yano-Kolyma gold-bearing belt. Minera-geny problems of Russia. Мoscow: GC RAS, 2012. pp. 325–336. URL: https://onznews.wdcb.ru/ebooks/minerageny/chap_1.1.18.pdf.
28. Golub V. V., Goryachev N. A. Mineral and geochemical features of ore zones and pillars of deep horizons of the Natalka deposit. Ore genesis and metallogeny of East Asia: conference proceedings. Yakutsk: DPMGI SB RAS, 2006. pp. 45–46.
29. Grigorov S. A., Vorozhbenko V. D., Kushnarev P. I., Markevich V. Yu., Tokarev V. N., Chichev V. I., Yagubov N. P., Mikhailov B. K. Natalka gold deposit — structure and main search characteristics. Otechestvennaya Geologiya. 2007. No. 3. pp. 43–50.

Language of full-text russian
Full content Buy
Back