Журналы →  Obogashchenie Rud →  2020 →  №5 →  Назад

Название Magnetic properties of natural weakly magnetic iron oxides of the Kursk Magnetic Anomaly
DOI 10.17580/or.2020.05.01
Автор Gzogyan T. N., Gzogyan S. R.
Информация об авторе

Belgorod State National Research University (Belgorod, Russia):

Gzogyan T. N., Chief of Laboratory, Candidate of Engineering Sciences, mehanobr1@yandex.ru
Gzogyan S. R., Senior Researcher, gzogyan@bsu.edu.ru


This paper contains the results of complex studies on magnetic characteristics of a system of basic natural weakly magnetic iron oxides isolated from the oxidized ferruginous quartzites of the KMA. It has been shown that their magnetic characteristics vary over a wide range and substantially depend on the nature of the samples, i.e. represent not only physical, but also genetic characteristics. The contrast in magnetic properties inside the system exceeds the mere hydroxides/quartz contrast; therefore, it is necessary to differentiate the recovery conditions for various iron oxides. For example, the magnetic characteristics of martite and hematite behave differently in different size classes. This dependence is most noteworthy for hematite. It has been shown that, despite the relatively low mass fraction of the ferromagnet, magnetic susceptibility of natural systems of weakly magnetic iron oxides may be an important genetic and diagnostic trait, which must be taken into account when designing all respective separation technology and equipment. The problem under consideration is directly related to mineral processing and the technology must ensure the recovery of both coarse and fine highly and medium magnetic particles into the concentrate.

Ключевые слова Xidized ferruginous quartzites, magnetic susceptibility, magnetization intensity, electron microscopy, differential calorimetry, thermogravimetry, Mössbauer spectroscopy
Библиографический список

1. Orlov I. P., Verigin M. I., Golivkin N. I. Iron ores of KMA. Мoscow: Geoinformmark, 1988. 842 p.
2. Gzogyan T. N. Features of the composition and structure of oxidized ferruginous quartzites of the Mikhailovskoye
deposit, KMA. Gorny Informatsionno-analiticheskiy Byulleten'. 2012. No. S4-12. pp. 3–16.
3. Zuev V. V. Mineral genesis and paragenesis energy aspects. Obogashchenie Rud. 2017. No. 1. pp. 29–34. DOI: 10.17580/or.2017.01.06.
4. Ismagilov R. I., Baskaev P. M., Ignatova T. V., Shelepov E. V. The prospects for expanding the iron ore mineral and raw material base through the processing of oxidized ferruginous quartzite of the Mikhailovskoe deposit. Obogashchenie Rud. 2020. No. 3. pp. 19–24. DOI: 10.17580/or.2020.03.04.
5. Varichev A. V., Ugarov A. A., Efendiev N. T., Kretov S. I., Lavrinenko A. A., Solodukhin A. A., Puzakov P. V. Innovative solutions in the production of iron ore raw materials at the Mikhailovsky GOK. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2017. No. 5. pp. 141–153.
6. Maly V. M. Development of technology for magnetic beneficiation of oxidized ferruginous quartzites: dissertation abstract for the degree of Сandidate of Engineering Sciences. Dnepropetrovsk, 1987. 19 p.
7. Oliazadeh M., Vazirizadeh A. Removing impurities from iron ores: methods and industrial cases. Proc. of the XXVIII IMPC, Quebec, September 11–15, 2016. Vol. 7. pp. 4290–4302.
8. Gzogyan T. N. Features of the composition and properties of KMA oxidized quartzites as the basis of rational technology for their processing. Proc. of the IX Congress of CIS ore dressers. Мoscow: МISIS, 2013. Vol. 1. pp. 166–173.
9. Vonsovsky S. V. Magnetism. Мoscow: Nauka, 1971. 1032 p.
10. Nagata T. Magnetism of rocks. Мoscow: Mir, 1965. 340 p.
11. Baldakhin V. V., Perfiliev Yu. D., Kulikov L. A., Burnazyan M. A. Iron oxidation with different isotope content. Vestnik MGU. Ser. 2: Khimiya. 2015. Vol. 56, No. 2. pp. 91–97.
12. Kudryavtseva G. P. Ferrimagnetism of natural oxides. Мoscow: Nedra, 1988. 232 p.
13. Krinchik G. S. Physics of magnetic phenomena. Мoscow: MGU, 1985. 335 p.
14. Gzogyan T. N., Gzogyan S. R. Magnetic properties of natural minerals jaspilites KMA. Materials of the XIII European сonference on innovations in technical and natural sciences. Vienna, 2017. pp. 99–107.
15. Wills B. A., Finch J. A. Wills' mineral processing technology. 8 ed. Butterworth-Heinemann, 2015. 512 р.
16. DeGostin M. B. Three-dimensional microstructural imaging and charge transport modeling tools for fuel cell materials: master's theses. University of Connecticut, 2015. 139 p.
17. Papalambros P. Y., Wilde D. J. Principles of optimal design: modeling and computation. 3 ed. Cambridge, New York: Cambridge University Press, 2017. 376 p.
18. Drzymala J. Mineral processing: fundamentals of theory and practice from minerallurgy. Wroclaw: Wroclaw University of Technology, 2007. 510 р.
19. Bhadani K., Asbjörnsson G., Hulthén T., Evertsson M. Application of multi-disciplinary optimization architectures in mineral processing simulations. Minerals Engineering. 2018. Vol. 128. pp. 27–35.
20. Khabarov V. I., Grankin P. I., Zvegintsev A. N., Gzogyan T. N. Magnetic properties of artificial ferruginous quartzites and finely dispersed hematites. Combined methods of ore processing: materials of scientific papers. Мoscow: IPKON of RAS, 1988. pp. 99–105.

Language of full-text русский
Полный текст статьи Получить