Журналы →  Tsvetnye Metally →  2020 →  №10 →  Назад

Название Electrolytic production of aluminium. Review. Part 2. Development prospects
DOI 10.17580/tsm.2020.10.06
Автор Gorlanov E. S., Kawalla R., Polyakov A. A.
Информация об авторе

EKSPERT-AL LLC, Saint Petersburg, Russia:

E. S. Gorlanov, Deputy General Director, Associate Ptofessor, Doctor of Technical Sciences, e-mail: gorlanove@yandex.ru


Freiberg Mining Academy, Freiberg, Germany:
R. Kawalla, Director of the Institute of Metal Forming, Professor, Dr.-Ing., Prof. E. h. mult., e-mail: rudolf.kawalla@imf.tu-freiberg.de


Saint Petersburg Mining University, Saint Petersburg, Russia:
A. A. Polyakov, Postgraduate Student, e-mail: kafmet@spmi.ru


This paper looks at the evolution and the current status of inert electrodes. It also describes attempts to design new-generation aluminium cells with wettable cathodes and vertical electrodes. Numerous laboratory studies and pilot tests demonstrate that aluminium cells equipped with inert electrodes are environmentally safe and can deliver a breakthrough technology enabling to bring the power consumption down below 10 kWt·h/kg Al and at the same time increase the production even in the limited capacity of the electrolytic bath. There exists a number of projects aimed at commercializing the inert electrode technology. And despite the apparent loss of interest in this technology on the part of researchers and aluminium producers, relevant pilot tests are scheduled for 2024. A number of alternative innovative power saving cryolite-alumina bath techniques are being discussed, which should allow to get close to the theoretical level of power consumption and provide a dramatic boost in the cell capacity. The paper examines potential application of thermoelectric generators to reduce heat losses, the use of minimum anode-to-cathode distance and vertical nonwettable electrodes, and a transition to 3D electrodeposition of aluminium with cathode polarization.

Ключевые слова Superpowerful cells, indicators, areas of prospective development, structures, processes, power saving, power consumption, inert electrodes, thermoelectric generators, non-wettable electrodes, 3D electrodeposition
Библиографический список

1. Gorlanov E. S., Brichkin V. N., Polyakov А. А. Electrolytic production of aluminium. Review. Part 1. Conventional areas of development. Tsvetnye Metally. 2020. No. 2. pp. 36–41. DOI: 10.17580/tsm.2020.02.04.
2. Ransley C. E. Improvements in or relating to electrolytic cells for the production of aluminium. Patent 802905 GB. Applied: 14.01.1954. Published: 15.10.1958.
3. Lewis R. A. Production of Aluminum. Patent 2915442 US. Applied: 28.11.1955. Published: 1.12.1959.
4. Lewis R. A., Hildebrandt R. D. Electrolytic Cell for Production of Aluminum and Method of Making the Same. Patent 3400061 US. Applied: 21.11.1963. Published: 03.09.1968.
5. Dewey J. L. Refractory Lining for Alumina Reduction Cells. Patent 3093570 US. Applied: 20.10.1959. Published: 11.06.1963.
6. Hudson T. J. Cathode Technology for Aluminum Electrolysis Cells. Light Metals. 1987. pp. 321–325.
7. Gessing A. J., Wheeler D. J. Screening and Evaluation Methods of Cathode Materials for Use in Aluminum Reduction Cells in Presence of Molten Aluminum and Cryolite up to 1000 oC. Light Metals. 1987. pp. 327–334.
8. Joo L. A., Tucker K. W., McCown F. E. Titanium diboride-graphite composites. Patent 4376029 US. Applied: 11.09.1980. Published: 08.03.1983.
9. Tucker K. W. et al. Stable TiB2 – Graphite Cathode for Aluminium Production. Light Metals. 1987. pp. 345–349.
10. Øye H. A. et al. Properties of Colloidal Alumina-Bonded TiB2 Coating on Carbon Cathode Materials. Light Metals. 1997. pp. 279–286.
11. Sekhar J. A., de Nora V. Electrochemical cell component or other material having oxidation preventive coating. Patent 5364513 US. Applied: 12.06.1992. Published: 15.11.1994.
12. Sekhar J. A., Duruz J-J., Liu J. J. Slurry and method for producing refractory borides and coatings for use in aluminium electrowining cells. Patent 6783655 US. Applied: 27.06.2002. Published: 31.08.2004.
13. Hiltmann F., Seitz K. Titanium Diboride Plasma Coating of Carbon Cathode Materials. Light Metals. 1997. pp. 379–390.
14. Brown G. D. et al. TiB2 Coated Aluminium Reduction Cells: Status and Future Direction of Coated Cells in Comalco. Proceedings of the 6th Australasian Aluminium Smelter Technology Conference and Workshop. Ed. B. J. Welch, M. Skyllas-Kazacos. Queenstown, New Zealand, 1998. pp. 499– 508.
15. Keniry J. Future directions for aluminium reduction cell technology. 7th Australasian Aluminium Smelting Technology Conference. Melbourne, Australia, 11–16 November 2001.
16. Welch B. Inert anodes – the status of the materials science, the opportunities they present and the challenges that need resolving before commercial implementation. Light Metals. 2009. pp. 971–977.
17. Hall Ch. M. Process of Reducing Aluminum by Electrolysis. Patent 400766 US. Applied: 09.07.1886. Published: 02.04.1889.
18. Belyaev A. I., Studentsov Ya. V. Use of non-combustible (metal) anodes for alumina electrolysis. Legkie Metally. 1936. No. 3. pp. 15–24.
19. Belyaev A. I., Studentsov Ya. V. Use of non-combustible anodes made of oxides for alumina electrolysis. Legkie Metally. 1937. No. 3. pp. 17–21.
20. Belyaev A. I. Use of non-combustible anodes made of ferrites for alumina electrolysis. Legkie Metally. 1938. No. 1. pp. 7–20.
21. Christini R. A., Dawless R. K., Ray S. P., Weirauch D. A. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells. DOI: 10.2172/794978.
22. de Nora V. Veronica and Tinor 2000 new technologies for aluminum production. The Electrochemical Society Interface. 2002. pp. 20–24.
23. McMinn C. The challenges of joining and rodding retrofitted inert anodes. 2nd International Melt Quality Workshop. Prague, Czech Republic, 16–17 October 2003.
24. Simakov D. A., Frolov V., Gusev A. O. Developing an inert anode electrolysis process. 2nd International Congress “Non-Ferrous Metals – 2010”. Krasnoyarsk, 2–4 September 2010. pp. 546–554.
25. Bradford D. R. Inert Anode Life in Low Temperature Reduction Process. DOI: 10.2172/841153.
26. Thonstad J. Some Recent Trends in Molten Salt Electrolysis of Titanium, Magnesium, and Aluminium. High Temperature Materials and Processes. 1990. Vol. 9, No. 2–4. pp. 135–146.
27. Aluminium producers promise a cleaner smelting pot. Nature. 2018. Vol. 557. p. 280.
28. Kovrov V. A., Khramov A. P., Zaykov Yu. P. Electrolysis method of molten salts with oxygen-containing additives using inert anode. Patent RF, No. 2457286. Applied: 02.03.2011. Published: 27.07.2012. Bulletin No. 21.
29. Gorlanov E. S. Solid cathode electrolysis of cryolite-alumina melts. Proceedings of the 11th International Congress “Non-Ferrous Metals and Minerals” and the 37th International Conference “ICSOBA”. Krasnoyarsk, 16–20 September 2019. pp. 275–288.
30. Lange H. P., Holt N. J., Linga H., Solli L. N. Innovative solutions to sustainability in hydro. Light Metals. 2008. pp. 211–216.
31. Taylor M. P., Chen J. J. Technique for low amperage pot line operation for electricity grid storage. Metallurgical and Materials Transactions E. 2015. Vol. 2e. pp. 87–98.
32. Dorreen M., Wright L., Matthews G., Patel P. et al. Transforming the Way Electricity is Consumed During the Aluminium Smelting Process. Energy Technology 2017. TMS, Springer, 2017. pp. 15–25.
33. Gao B., Wang Zh., Shi Zh., Hu X. History and Recent Developments in Aluminum Smelting in China. Proceedings of the 35th International ICSOBA Conference. Hamburg, Germany, 2–5 October 2017. pp. 53–68.
34. Mann V. Kh., Pingin V. V., Arkhipov G. V., Zherdev A. S. et al. The resource saving technology of United Company RUSAL. Proceedings of the 11th International Congress “Non-Ferrous Metals and Minerals” and the 37th International Conference “ICSOBA”. Krasnoyarsk, 16–20 September 2019. pp. 255–230.
35. Sychev V. V. Nanotechnology for energy saving: An outlook for the critical research areas. Rossiyskiy khimicheskiy zhurnal. 2008. Vol. LII, No. 6. pp. 118–128.
36. Shostakovskiy P. Thermoelectric generators for industrial application. Part 1. Sovremennaya elektronika. 2016. No. 1. pp. 2–7.

37. Dannowski M., Beckert W., Wagner L., Martin H. P. 3D-Model of Asymmetric Thermo-Electric Generator Modules for High Temperature Applications. Fraunhofer IKTS. Dresden, Germany, 2013. 5 p.
38. Schilm J., Pönicke A. et al. TiOx based thermoelectric modules — manufacturing, properties and operational behavior. Materials Today. Proceedings. 2015. Vol. 2, Iss. 2. pp. 770–779.
39. Gorlanov E. S., Bazhin V. Yu., Sman A. V. Method of producing titanium boride powder. Patent RF, No. 2603407. Applied: 30.04.2015. Published: 27.11.2016. Bulletin No. 33.
40. Ivanov V. V., Vasiliev S. Yu., Laurinavichyute V. K., Chernousov A. A., Blokhina I. A. Method of producing titanium boride powder for aluminium electrolytic cell wetted cathode material. Patent RF, No. 2498880. Applied: 13.08.2012. Published: 20.11.2013. Bulletin No. 32.
41. Galevskiy G. V., Rudneva V. V. Boride formation in a plasma flow. Bulletin of the Mining and Metallurgy Section of the Russian Academy of Natural Sciences. Metallurgy Department. 2010. Iss. 26. pp. 111–116.
42. Gorlanov E. S. Application of solid electrodes for cryolite-alumina melt electrolysis. Proceedings of Irkutsk State Technical University. Metallurgy and Materials Science. 2019. Vol. 23, No. 2. pp. 356–366.
43. Beck T. R. Aluminum production cell. Patent 8480876 US. Applied: 26.12.2007. Published: 09.07.2013.
44. Tabereaux A. Super-high amperage prebake cell technologies in operation at worldwide aluminum smelters. Light Metal Age. 2017. pp. 30–32.
45. Akhmedov S., Kozlov V., Rozanov V., Gorlanov M. Economic feasibility analysis of construction of high amperage aluminium smelters. Proceedings of the 33th International ICSOBA Conference. Dubai, UAE, November 29 – December 1, 2015. pp. 613–625.

Language of full-text русский
Полный текст статьи Получить