Journals →  Gornyi Zhurnal →  2020 →  #9 →  Back

ArticleName Improvement of flotation technologies for the Kola Peninsula ore
DOI 10.17580/gzh.2020.09.09
ArticleAuthor Chernousenko E. V., Perunkova T. N., Artemiev A. V., Mitrofanova G. V.

Mining Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia:

E. V. Chernousenko, Researcher,
T. N. Perunkova, Leading Technologist
A. V. Artemiev, Researcher
G. V. Mitrofanova, Leading Researcher, Candidate of Engineering Sciences


The paper presents the results of technological studies on poor and rebellious nickel and phosphorus mineral raw materials. The authors have found that optimized regime of rebellious finely disseminated copper–nickel processing with reagents–dispersers allows increasing recovery of nonferrous metals into concentrate and decreasing their content in flotation tailings. The authors propose new complexing collectors with hydroxamate and hydrazide groupings and, on their basis, the reagent regimes for flotation of sulphide nonferrous ore. The potential application of these reagents instead of Aeroflot with improvement of technological parameters has been shown. The authors have defined high efficiency of the reagents based on polyalkyl benzene sulfonates and hydroxamic acids in reverse flotation of nepheline from apatite–nepheline ore with a high content of titanium-bearing minerals. The specific action of these reagents and the strength of the dark-colored mineral attachment ensure high selectivity of separation. The paper demonstrates high efficiency of anionic polyacrylamide flocculant in water treatment technologies at apatite–nepheline dressing plants.

keywords Flotation, copper–nickel ore, apatite–nepheline ore, water treatment, complexing collectors, flocculants

1. Tereshchenko S. V., Marchevskaya V. V., Shibaeva D. N., Aminov V. N. Resource-saving dressing technology for apatite-nepheline ores of the Khibiny massif. Obogashchenie Rud. 2018. No. 3. pp. 32–38. DOI: 10.17580/or.2018.03.06
2. Chernousenko E. V., Alekseeva S. A., Rukhlenko E. D., Mitrofanova G. V. Prospects for feasibility of processing of refractory copper–nickel ores and waste stockpiles. Gornyi Zhurnal. 2020. No. 3. pp. 45–50. DOI: 10.17580/gzh.2020.03.08
3. Likhacheva S. V., Neradovskiy Yu. N., Vasileva O. A. Monitoring of natural technological structural and texture features of copper-nickel ores of Pechenga in the process of enrichment at the enrichment plant of the Kola Mining and Metallurgical Company. Non-Ferrous Metals and Minerals : Proceedings of the Ninth International Congress. Krasnoyarsk : Science and Innovation Center Publishing House, 2017. pp. 1251–1253.
4. Chernousenko E. V., Neradovsky Yu. N., Kameneva Yu. S., Vishnyakova I. N., Mitrofanova G. V. Increasing efficiency of Pechenga rebellious copper–nickel sulphide ore flotation. Journal of Mining Science. 2018. Vol. 54, Iss. 6. pp. 1035–1040.
5. Collins Mudenda, Bupe G. Mwanza, M’hango Kondwani. Analysis of the Effects of Grind Size on Production of Copper Concentrate: A Case Study of Mining Company in Zambia. International Conference on Chemical Processes and Green Energy Engineering. Harare, 2015. pp. 74–79.
6. Vigdergauz V. E., Shrader E. A., Sarkisova L. M., Kuznetsova I. N. Fine-size wild lead flotation stimulation using flocculants. GIAB. 2013. No. 3. pp. 150–154.
7. Zhou Weiguang, Ou Leming, Feng Qiming, Zhang Guofan, Lu Yiping et al. Flotation of ultra-fine scheelite particles assisted by nanobubbles. Proceedings of XXVIII International Mineral Processing Congress. Quebec, 2016.
8. Zhou P., Lewis A., Nordberg H. Tecflote-TM – novel chemistry for new sulfide collectors. XXIX International Mineral Processing Congress. Moscow, 2018.
9. Gusev V. Yu., Radushev A. V., Chekanova L. G., Baygacheva E. V., Manylova K. O., Gogolishvili V. O. Azo derivatives of phenol and 1-naphthol as flotation collector of sulfide ore of non-ferrous metals. Russian Journal of Applied Chemistry. 2018. Vol. 91, No. 4. pp. 573–582.
10. Daixiong Chen, Jun Xiao, Chunming He, Xiaodong Li. Copper oxide flotation using the combined collectors of benzolhydroxamic acid and butyl xanthate. Proceedings of XXVIII International Mineral Processing Congress. Quebec, 2016.
11. Timoshenko L. I., Chekanova L. G., Markosyn S. M., Baygacheva E. V. Agents from the class of hydrazides for beneficiation of impregnated copper-nickel ores by flotation. Khimicheskaya tekhnologiya. 2014. Vol. 15, No. 8. pp. 488–492.
12. Pilipenko A. T., Zulfigarov O. S. Hydroxamic acids. Moscow : Nauka, 1989. 311 p.
13. Radushev A. V., Chekanova L. G., Gusev V. Yu. Hydrazides and 1,2-diacyl hydrazines. Production, properties and use in concentration of metals. Yekaterinburg : UrO RAN, 2010. 140 p.
14. Rappoport J. F., Liebman J. F. (Eds.). The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Patai Series: The Chemistry of Functional Groups. Chichester : John Wiley & Sons Ltd., 2009. Part. 1. 1078 p.
15. Korneeva U. V., Marchevskaya V. V. Khibiny apatite–nepheline ore processing problems. Future of the Arctic Starts Here : Proceedings of II All-Russian Conference with International Participation. Apatity : MAGU’s Division in Apatity, 2018. pp. 53–62.
16. Jafari M., Chehreh Chelgani S., Pourghahramani P., Ebadi H. Measurement of collector concentrations to make an efficient mixture for flotation of a low grade apatite. Measurement. 2018. Vol. 121. pp. 19–25.
17. Gorochovceva N., Klingberg A., Lannefors J. Development of anionic collectors for direct flotation of apatite from complex siliceous ores with a focus on sustainability. Proceedings of XXVII International Mineral Processing Congress. Santiago, 2014. pp. 68–78.
18. Ivanova V. A., Gershenkop A. Sh., Shlykova G. A., Mukhina T. N. Use of polyalkilbenzolsulfonates in apatite flotation and for aluminosilicate concentrate recovery. The Problems of Mineral Raw Materials Resources Development in the Kola Region and of Utilization of Underground Space for Waste Disposal. Apatity : Kolskiy nauchnyi tsentr RAN, 1999. pp. 182–190.
19. Lavrinenko A. A., Shrader E. A., Kharchikov A. N., Kunilova I. V. Apatite flotation from braziliteapatite-magnetite ore. Journal of Mining Science. 2013. Vol. 49, No. 5. pp. 811–818.
20. Gershenko A. Sh., Ulezko A. A., Aleynikov N. A., Efimova N. S. Complex enrichment of apatitenepheline ore of Partomchorrsk deposit. Complex enrichment of phosphorus-containing raw materials. Apatity, 1977. pp. 39–44.
21. Baranov V. F. Final tailings thickening and disposal systems (world practice review). Obogashchenie Rud. 2009. No. 3. pp. 43–48.
22. Golovanov V. G., Petrovskiy A. A., Brylyakov Yu. E. Introduction of recycling water supply at apatite–nepheline processing plant 2. Gornyi Zhurnal. 1999. No. 9. pp. 48–50.
23. Gandurina L. V. Wastewater treatment by synthetic flocculants. Moscow : DAR/VODGEO, 2007. 198 p.
24. Ikonnikova K. V., Ikonnikova L. F., Minakova T. S., Sarkisov Yu. S. Theory and practice of pH meteringbased determination of acid-base surface properties of solids : Teaching aid. Tomsk : Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2011. 85 p.
25. Ishankhodzhaeva M. M., Mkhitaryan E. L. Physical chemistry. Polyelectrolytes. Saint-Petersburg : SPbGTURP, 2015. 40 p.

Language of full-text russian
Full content Buy