Journals →  Obogashchenie Rud →  2020 →  #4 →  Back

ArticleName Study of the structural and chemical features of fluorapatite of the Khibiny Massif as a potential raw material for processing
DOI 10.17580/or.2020.04.03
ArticleAuthor Neradovsky Yu. N., Kompanchenko A. A., Bazay A. V., Baybikova Yu. B.

Geological Institute of the Kola Scientific Center of RAS (Apatity, Russia):

Neradovsky Yu. N., Leading Researcher, Candidate of Geological and Mineralogical Sciences,
Kompanchenko A. A., Researcher,
Bazay A. V., Researcher,

Kirovsk Branch of JSC «Apatit», PhosAgro (Kirovsk, Russia):
Baybikova Yu. B., Engineer,


The article discusses the specific features of changes in the chemical composition of fluorapatite from the Khibiny Massif and the possible consequences of changes in its processing properties that may lead to lower apatite concentrate grades. Fluorapatite contains more than ten chemical elements, the main being P2O5, CaO, F, SrO and TR, with SiO2, Na2O and H2O constantly present in small quantities. Due to the widespread iso- and heterovalent isomorphism, the chemical composition of the Khibiny apatite differs significantly from the theoretical values. The boundaries of respective isomorphic substitutions have not yet been sufficiently studied. It is especially important to study the P2O5 content. The available data indicate a relationship between he content of Sr, TR, SiO2, and P2O5 in apatite. With a transition from apatite-nepheline ores to host rocks and an increase in the urtite component in the ores, the P2O5 content in apatite (according to averaged data) decreases from 40.66 to 38.55 %. This is due to the presence of apatite with a low phosphorus content. The share of low-phosphorus apatite ranges from 4.1 to 7 % in the ores, from 13 to 27 % in urtites, and exceeds 55 % in foyaites. Low-phosphorus fluorapatite differs from the normal mineral by lower grain sizes and a more complex relationship with mafic minerals, which reduces its liberation and recovery. Low-phosphorus fluorapatite has a larger unit cell and higher density. It is assumed that it would be characterized by improved flotation properties due to an increase in the number of flotation ions on the surface of its crystal lattice.
The authors would like to thank Chief Process Engineer of JSC «Apatit» A. I. Kalugin for the support in the work and A. A. Telezhkin (JSC «Apatit») for the assistance in studying the minerals. The work was completed under research and development topic No. 0226-2019-0053 of the Geological Institute of the Kola Science Center of RAS.

keywords Fluorapatite, chemical composition, isomorphism, processing properties, apatite-nepheline ores, Khibiny Massif

1. Pasero M., Kampf A. R., Ferraris C., Pekov I. V., Rakovan J., White T. J. Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy. 2010. Vol. 22. pp. 163–179.
2. Коgarko L. N. Chemical сomposition and рetrogenetic implications of apatite in the Khibiny apatite-nepheline deposits (Kola Peninsula). Minerals. 2018. Vol. 8. pp. 165–178.
3. Kostyleva-Labuntsova E. E., Borutsky B. E., Sokolova M. N., Shlyukova Z. V., Dorfman M. D., Dudkin O. B., Kozyreva L. V. Mineralogy of the Khibiny massif (minerals). Vol. 2. Мoscow: Nauka, 1978. 586 p.
4. Denisov A. P., Dudkin O. B., Elina N. A., Kravchenko-Berezhnoy R. A., Polezhaeva L. I. On the dependence of the
physical properties of apatite on the admixture of rare earths and strontium. Geokhimiya. 1961. No. 8. pp. 666–676.
5. Shalika T., Perera H., Han Y., Lu X., Wang X., Dai H., Li S. Rare earth doped apatite nanomaterials for biological application. Journal of Nanomaterials. 2015. Vol. 2015. Article ID 705390, 6 p. DOI: 10.1155/2015/705390.
6. Konopleva N. G., Ivanyuk G. Yu., Pakhomovsky Ya. A., Yakovenchuk V. N., Mikhailova Yu. A. Typomorphism of fluorapatite in the Khibin alkaline massif (Kola Peninsula). Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2013. No. 3. pp. 65–83.
7. Kogarko L. N. Rare-earth potential of apatite in deposits and wastes of production of apatite-nepheline ores of the Khibiny massif. Trudy Fersmanovskoy Nauchnoy Sessii GI KNTS RAN. 2019. Vol. 16. pp. 271–275. DOI: 10.31241/FNS.2019.16.055.
8. Konopleva N. G. Geology of the Koashva apatitenepheline deposit (Khibiny massif): dissertation for the degree of Candidate of Geological and Mineral Sciences. Мoscow, 2009. 275 p.
9. Kameneva E. E. Flotation mineralogy of apatite. Fundamentals of mineralurgy. Theory and practice of mineral separation. Moscow: Nauka, 1983. pp. 245–249.
10. Kalugin A. I. Research and justification of optimal conditions for selective flotation of apatite from apatite-nepheline ores: dissertation for the degree of Candidate of Engineering Sciences. Moscow, 2002. 150 p.
11. Brylyakov Yu. E. Development of the theory and practice of complex beneficiation of apatite-nepheline ores of Khibiny deposits: dissertation for the degree of Doctor of Engineering Sciences. Kirovsk, 2004. 358 p.
12. Korneeva U. V., Marchevskaya V. V. Problems of Khibiny deposits apatite-nepheline ores beneficiation. Collection of materials of the II All-Russian scientific and practical conf. with international participation «The future of the Arctic starts here». Apatity: MASU. 2018. pp. 53–62.
13. GOST 22275-90. Concentrate of apatite. Specifications. Moscow: Publishing House of Standards, 1991. 18 p.
14. Dudkin O. B., Kozyreva L. V., Pomerantseva N. G. Mineralogy of apatite deposits of the Khibiny tundra. Moscow-Leningrad: Nauka, 1964. 235 p.
15. Romanchev B. P., Kogarko L. N., Kamenev E. A., Shevaleevskiy I. D. Genetic types of apatite of the Koashvinsky deposit. Proceedings of the Fersman mineralogical museum. 1975. Iss. 24. pp. 207–211.
16. Kay M. I., Young R. A., Posner A. S. Crystal structure of hydroxyapatite. Nature. 1964. Vol. 204. pp. 1050–1052.
17. Heijligers H. J. M., Driessens F. C. M., Verbeeck R. M. H. Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite. Calcified Tissue International. 1979. Vol. 29. pp. 127 – 131.
18. Rakovan J. F., Hughes J. M. Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Canadian Mineralogist. 2000. Vol. 38, No. 4. pp. 839–845.
19. Terra J., Dourado E. R., Eon J.-G., Ellis D. E., Gonzalez G., Rossi A. M. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Physical Chemistry Chemical Physics. 2009. Vol. 11. pp. 568–577.
20. Pekov I. V. Mineralogy of lithophilic rare elements. Moscow: MSU, 2012.
21. Korokin V. Zh. Preparation, structure and properties of apatites with tetrahedral anions АО4 (А–Si, P, V, Cr, S): dissertation for the degree of Candidate of Chemical Sciences. Nizhniy Novgorod, 2016. 147 p.
22. Nikolaev A. M. Isomorphism, formation conditions and properties of biogenic apatite and orthophosphates associated with it: dissertation for the degree of Candidate of Geological and Mineral Sciences. St. Petersburg, 2017. 141 p.
23. Sha M. C., Li Z., Bradt R. C. Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. Journal of Applied Physics. 1994. Vol. 75. pp. 7784–7787.
24. Yuanming P., Michael E. F. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry. 2002. Vol. 48, No. 1. pp. 13–49.
25. O’Donnell M. D., Fredholm Y., de Rouffignac A., Hill R. G. Structural analysis of a series of strontium-substituted apatites. Acta Biomaterialia. 2008. Vol. 4. pp. 1455–1464.
26. Chakmouradian A. R., Reguir E. P., Zaitsev A. N., Couёslan C., Xu C., Kynicky J., Mumin A. N., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos. 2017. Vol. 274. pp. 188–213.
27. Dorjpalma E., Jieun S., Seon-Gyu C., Young J. L., Enkhbayar B. Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia. International Journal of Geosciences. 2016. Vol. 7. pp. 20–31.
28. Teiber H., Marks M. A. W., Arzamastsev A. A., Wenzel T., Markl G. Compositional variation of apatite from various host rocks: clues with regards to source composition and crystallization conditions. Neues Jahrbuch für Mineralogie–Abhandlungen. 2015. Vol. 192, No. 2. pp. 151–167.

Language of full-text russian
Full content Buy