Journals →  Tsvetnye Metally →  2020 →  #8 →  Back

ArticleName Understanding the process of smelting copper-rich high-silicon concentrates in combination with copper-rich high-sulphur concentrates
DOI 10.17580/tsm.2020.08.01
ArticleAuthor Kozhakhmetov S. M., Kvyatkovskiy S. A., Semenova A. S., Baysanov A. S.

Satbayev University, Institute of Metallurgy and Ore Beneficiation, Almaty, Republic of Kazakhstan:

S. M. Kozhakhmetov, Principal Researcher, e-mail:
S. A. Kvyatkovskiy, Head of the Laboratory
A. S. Semenova, Lead Engineer


Zh. Abishev Chemical-Metallurgical Institute, Karaganda, Republic of Kazakhstan:
A. S. Baysanov, Head of the Laboratory


This paper describes an experimental study that looked at pyrometallurgical processing of high-silicon concentrates produced by the Jezkazgan Concentrator Plant in combination with high-sulphur copper sulphide concentrates from the Aktogay deposit. Additional components included converter slag and concentrate produced after flotation of cool converter slag from the Balkhash Smelter. A blend of the Aktogay and Jezkazgan concentrates mixed to the ratio of 1:2.6 was smelted in a laboratory environment at the temperature of 1,400 oC together with the additions of converter slag and converter slag concentrate. The study demonstrated the effect of the gas phase on the distribution of copper, iron and sulphur between the products. In an oxidation environment, mattes containing 51.9–56.6% of copper were obtained due to a high desulphurization degree of sulphide burden and partial conversion of iron into molten slag. In a reduction environment, typical of the smelting process adopted by the Jezkazgan Copper Smelter, the concentration of copper in mattes was 48.7–50.3%. The melting and conductivity temperatures of the produced slags were determined that would meet the smelting specification. The authors also demonstrate the possibility to produce mattes containing 49–50% of copper (which is in line with the bessemerizing specification adopted by the Jezkazgan Copper Smelter), as well as slags with low metal concentrations. The process of combined smelting of copper-rich low- and high-sulphur concentrates described in this paper can now be tested in the production environment of the Jezkazgan Copper Smelter.
This research study was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under the Grant no. АР05130400.

keywords Copper concentrate, converter slag, converter slag concentrate, smelting, matte, slag, viscosity, specific conductivity, melting temperature

1. Kvyatkovskiy S., Kozhakhmetov S., Abisheva Z., Bekenov M. et al. Improvement technology of Vanyukov smelting. Proceedings of Copper 2013. Santiago, Chile, 2013. Vol. III. pp. 1059–1063.
2. Kozhakhmetov S., Kvyatkovskiy S. The main results of research and industrial development of Vanyukov process in Kazakhstan. Vanyukov International Symposium on Sustainable Industrial Processing Summit & Exhibition. Antalya, Turkey, 2015. Vol. 5. pp. 267–272.
3. Zhukov V. P., Skopov G. V., Kholod S. I. Pyrometallurgy of copper (theory, practice, applied statistics, economics): Learner’s guide. Ed. by S. S. Naboychenko. Yekaterinburg : Sluzhba operativnoy poligrafii AKhU UrO RAN, 2016. 632 p.
4. Tsymbulov L. B., Knyazev M. V., Tsemekhman L. Sh. Dual chamber Vanukov furnace. Perspectives of its usage in non-ferrous metallurgy. Tsvetnye Metally. 2009. No. 9. pp. 36–43.
5. Hughes S., Reuter M., Kaye A. Ausmelt technology — developments in copper. Proceedings of Metalexpo 2007. Moscow, Russia, 2007.
6. Kenzhaliev B. K., Kvyatkovskiy S. A., Kozhakhmetov S. M., Sokolovskaya L. V. et al. Defining optimum depletion parameters for the Balkhash Copper Smelter dump slags. Metallurg. 2019. No. 7. pp. 78–83.
7. Grechko A. V. Pyrometallurgical production of copper and electric furnaces. Elektrometallurgiya. 2001. No. 3. pp. 16–21.
8. Kozhakhmetov S. M., Kvyatkovskiy S. A., Sultanov M. K., Tulegenova Z. K. et al. Pyrometallurgical processing of Aktogay oxidized copper ores and concentrates. Kompleksnoe ispolzovanie mineralnogo syrya. 2018. No. 3. pp. 54–62. DOI: 10.31643/2018/6445.17.

9. Peshkin D. S., Malygin A. V., Zhdanov A. V., Dmitrieva E. G. Softening temperature of low-silicon titanium-magnetite pellets. Rasplavy. 2015. No. 6. pp. 51–57.
10. Fedorov A. N., Dosmukhamedov N. K., Zholdasbay E. E. Formation of liquid phases and viscosity of the Cu2O – FeOх – SiO2 – CaO – Al2O3 slag system saturated with copper oxide. Tsvetnye Metally. 2019. No. 1. pp. 19–24. DOI: 10.17580/tsm.2019.01.03.
11. Gabdullin T. G., Takenov T. D., Baysanov S. O., Buketov E. A. Physico-chemical properties of manganese slags. Alma-Ata : Nauka, 1981. 232 p.
12. Akberdin A., Konurov U., Kim A., Isagulov A. et al. Viscosity and electric conductivity of melt system of CaO – Al2O3 – B2O3. Metalurgija. 2016. Vol. 55, Iss. 3. pp. 313–316.
13. Wang Y. N., Liu Z. Z., Cao L. L., Blanpain B. et al. Simulation of particle migration during viscosity measurement of solid-bearing slag using a spindle rotational type viscometer. Chemical Engineering Science. 2019. Vol. 207. pp. 172–180. DOI: 10.1016/j.ces.2019.06.022.
14. Zayakin O. V., Statnykh R. N., Zhuchkov V. I. Study of the Possibility of Obtaining Non-Decomposing Slag During Low-Carbon Ferrochrome Production. Metallurgist. 2019. Vol. 62, Iss. 9-10. pp. 875–881. DOI: 10.1007/s11015-019-00744-8.
15. Basov A. V., Magidson I. A., Smirnov N. A. Physical properties of refining slags. Vestnik YuUrGU. Seriya “Metallurgiya”. 2015. Vol. 15, No. 3. pp. 43–53.
16. Magidson I. A., Smirnov N. A., Basov A. V. Density and electric conductivity of some synthetic slags for the ladle furnace process of steel treatment. Izvestiya vuzov. Chernaya metallurgiya. 2015. Vol. 58, No. 11. pp. 803–809. DOI: 10.17073/0368-0797-2015-11-803-809.
17. Akimov E. N., Malkov N. V., Roshchin V. E. Electric conductivity of highalumina and high-chromium slags. Vestnik YuUrGU. Seriya “Metallurgiya”. 2013. No. 1. pp. 186–188.
18. Pang Z. D., Lv X. W., Yan Z. M., Liang D. et al. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Electrical Conductivity. Metallurgical and Materials Transaction B. 2019. Vol. 50, Iss. 1. pp. 385–394. DOI: 10.1007/s11663-018-1461-y.

Language of full-text russian
Full content Buy