Журналы →  Obogashchenie Rud →  2020 →  №1 →  Назад

BENEFICIATION PROCESSES
Название Oleic acid–SDS interaction in phosphate reverse flotation
DOI 10.17580/or.2020.01.04
Автор El-Midany A. A., Arafat Y., El-Mofty S. E.
Информация об авторе

Cairo University, Giza, Arab Republic of Egypt:

El-Midany A. A., Professor, PhD in Mining Engineering, Professor, aelmidany@gmail.com

 

King Saud University, Riyadh, Kingdom of Saudi Arabia:

Arafat Y., Graduate Student, MSc in Chemical Engineering, engr.arafat111@yahoo.com

 

Bisha University, Bisha, Kingdom of Saudi Arabia:

El-Mofty S. E., Vice Dean, PhD in Mining Engineering, Professor, selmofty@ub.edu.sa

Реферат

Oleic acid and sodium dodecyl sulphate are among those collectors that have been used in phosphate flotation circuits. Their ability to work even at highly acidic pH, which is the common practice in phosphate reverse flotation, is an advantage. Previously, the authors tested a mixture of oleic acid (Ol) and sodium dodecyl sulfate (SDS) for upgrading low-grade phosphate ore in terms of the collector dosage, pH, and ratio of the oleic and SDS mixture. It has been found that using a mixture of both collectors with the 1:1 ratio gives the best results. This article describes the use of infrared spectroscopy methods to study the interactions of each collector or their mixture with phosphate ore and with each other. The Fourier Transform Infra-Red (FTIR) spectra show that the emergence and reduction of some peaks or even generation of a new peak may enhance the hydrophobicity or collecting power of a surfactant mixture. That is why the Ol–SDS mixture is better in producing a higher-grade concentrate than that produced using each collector individually.

Ключевые слова Calcareous phosphate, reverse flotation, oleic acid, sodium dodecyl sulphate, infrared spectroscopy methods
Библиографический список

1. Elmahdy A. M., Abdel-Khalek N. A., El-Midany A. A. Statistical significance of some operating parameters on dolomite removal from phosphate using amphoteric collector. Minerals and Metallurgical Processing. 2007. Vol. 24. pp. 51–56.
2. Birken I., Bertucci M., Chappelin J., Jorda E. Quantification of impurities, including carbonates speciation for phosphates beneficiation by flotation. Procedia Engineering. 2016. Vol. 138. pp. 72–84.
3. Hoang D. H., Hassanzadeh A., Peuker U. A., Rudolph M. Impact of flotation hydrodynamics on the optimization of finegrained carbonaceous sedimentary apatite ore beneficiation. Powder Technology. 2019. Vol. 345. pp. 223–233.
4. Mohammadkhani M., Noaparast M., Shafaei S. Z., Amini A., Amini E., Abdollahi H. Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate. International Journal of Mineral Processing. 2011. Vol. 100. pp. 157–165.
5. El-Shall H., Zhang P., Snow R. Comparative analysis of dolomite/francolite flotation techniques. Minerals and Metallurgical Processing. 1996. Vol. 7. pp. 135–140.
6. Özer A. K. The characteristics of phosphate rock for upgrading in a fluidized bed. Advanced Powder Technology. 2003. Vol. 14. pp. 33–42.
7. Zhou F., Wang L., Xu Z., Ruan Y., Chi R. A study on novel reactive oily bubble technology enhanced cellophane flotation. International Journal of Mineral Processing. 2017. Vol. 69. pp. 85–90.
8. Yu H., Wang H., Sun C. Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions. International Journal of Mining Science and Technology. 2018. Vol. 28. pp. 453–459.
9. El-Shall H., Abdel-Khalek N. A., Svoronos S. Collectorfrother interaction in column flotation of Florida phosphate. International Journal of Mineral Processing. 2000. Vol. 58. pp. 187–199.
10. Filippov L. O., Filippova I. V. Synergistic effects in mix collector systems for non sulfide mineral flotation. Proc. of XXIII IMPC, Istanbul, Turkey, 3–8 September 2006. pp. 631–634.
11. Filippov L. O., Duverger A., Filippova I. V., Kasaini H., Thiry J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Minerals Engineering. 2012. Vol. 36–38. pp. 314–323.
12. El-Midany A. A., Arafat Y. Enhancing phosphate grade using oleic acid – sodium dodecyl sulphate mixtures. Chemical Engineering Communication. 2016. Vol. 203, Iss. 5. pp. 660–665.
13. El-Midany A. A., Abd El-Aleem F. A., Al-Fariss T. F. Why relatively coarse calcareous phosphate particles are betterin a static-bed calciner? Powder Technology. 2013. Vol. 237. pp. 180–185.
14. Abdel-Zaher M. A. Physical and thermal treatment of phosphate ores — An overview. International Journal of Mineral Processing. 2008. Vol. 85. pp. 59–84.
15. Nanthakumar B., Grimm D., Pawlik M. Anionic flotation of high-iron phosphate ores – Control of process water chemistry and depression of iron minerals by starch and guar gum. International Journal of Mineral Processing. 2009. Vol. 92. pp. 49–57.
16. Ince D. E., Johnston C. T., Moudgil B. M. Fourier transform infrared spectroscopic study of adsorption of oleic acid on surfaces of apatite and dolomite. Langmuir. 1991. Vol. 7. pp. 1453–1457.
17. Liu Y. Review on the vibrational spectroscopy of apatites. Journal of Wuhan Institute of Technology. 2002. Iss. 1. pp. 21–27.
18. Szilas C., Bender K. C., Msolla M. M., Borggaard O. K. The reactivity of Tanzanian Minjingu phosphate rock can be assessed from the chemical and mineralogical composition. Geoderma. 2008. Vol. 147, Iss. 3–4. pp. 172–177.
19. Lima R. M. F., Brandao P. R. G., Peres A. E. C. The infrared spectra of amine collectors used in the flotation of iron ores. Minerals Engineering. 2005. Vol. 18. pp. 267–273.
20. Vijaya Kumar T. V., Prabhakar S., Bhaskar Raju G. J. Adsorption of oleic acid at sillimanite/water interface. Journal of Colloid and Interface Science. 2002. Vol. 247, Iss. 2. pp. 275–281.
21. Smith B. Infrared sectral interpretation: A systematic approach. Boca Raton: CRC Press, 1999. p. 98.
22. Mkhonto D., Ngoepe P. E., Cooper T. G., Leeuw N. H. A computer modeling study of the interaction of organic adsorbates with fluorapatite surfaces. Physics and Chemistry of Minerals. 2006. Vol. 33. pp. 314–331.
23. Gao X., Chorover J. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and a-Fe combining infrared spectroscopy and batch uptake studies. Journal of Colloid and Interface Science. 2010. Vol. 348, Iss. 1. pp. 167–176.
24. Pandey G., Shrivastav S., Sharma H. K. Role of solution pH and SDS on shape evolution of PbS hexagonal disk and star/flower shaped nanocrystals in aqueous media. PHYSICA E. 2014. Vol. 56. pp. 386–392.

Language of full-text английский
Полный текст статьи Получить
Назад