Журналы →  Tsvetnye Metally →  2020 →  №1 →  Назад

Название Estimation of metallurgical processes and their status in optimal control problems
DOI 10.17580/tsm.2020.01.12
Автор Salikhov Z. G., Rutkovskiy A. L., Kovaleva M. A.
Информация об авторе

Institute of Control Sciences of the Russian Academy of Sciences, Moscow, Russia:

Z. G. Salikhov, Principal Researcher, Professor, Doctor of Technical Sciences, e-mail: zuf1940@yandex.ru


North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russia:
A. L. Rutkovskiy, Professor, Department of Theory and Automation of Metallurgical Processes and Furnaces, Candidate of Technical Sciences, e-mail: rutkowski@mail.ru


Vladikavkaz Branch of the Financial University under the Government of the Russian Federation, Vladikavkaz, Russia:
M. A. Kovaleva, Acting Head of the Department of Corporate Information and Communication Systems, Associate Professor at the Department of Mathematics and Computer Science, Candidate of Technical Sciences, e-mail: Mary_kovaleva@list.ru


This paper describes a method of adaptive identification under uncertainty when one only knows the probable value regions of input and output stochastic variables of an object. The authors describe a solution for estimating the functionals describing the stochastic process. The solution implies a consistent rise in the number of observations and at the same time minimisation of the maximum possible error. A recursive type of minimax estimation technique is presented. As the number of observations rise, the information acquired at the previous calculation stages is retained and utilized in further calculations. The methods and results of this research were applied in theoretical and applied research projects that looked at optimizing the processes of fluidizedbed roasting of zinc concentrates and fuming of middlings in rotary kilns. It is proposed to also apply them to design multi-level systems to control complex metallurgical processes when no control of the stochastic coordinates of the object’s state is possible.

Ключевые слова Hilbert space, estimation error, interference, measurement error, identification, recursive estimation, information
Библиографический список

1. Kurinskiy A. B. Control and observation under conditions of uncertainty. Moscow : Nauka, 1977. 392 p.
2. Salikhov Z. G., Arunyants G. G., Rutkovskiy A. L. Optimal control systems for complex production sites. Moscow : Teploenergetik, 2004. pp. 96–190.
3. Szpankowski W., Weinberger M. J. Minimax redundancy for large alphabets. Information Theory Proceedings (ISIT) 2010 IEEE International Symposium. 2010. pp. 1488–1492.
4. Jalali Sh., Poor H. V. Minimum entropy pursuit: Noise analysis. Acoustics Speech and Signal Processing (ICASSP) 2017 IEEE International Conference. 2017. pp. 6100–6104.
5. Koyama T., Matsuda T., Komaki F. Minimax Estimation of Quantum States Based on the Latent Information Priors. Entropy. 2017. No. 19. p. 618.
6. Nakonechnyi A. G., Podlipenko Yu. K., Pertsov A. S. Minimax estimation of the boundary value problem solution for equations of the linear elasticity theory with Neumann-type boundary conditions. Reports of the National Academy of Sciences of Ukraine. 2010. No. 2. pp. 43–49.
7. Podlipenko Yu. K., Grishchuk N. V. Minimax estimation of solutions to degenerate Neumann problems for elliptic equations based on observations distributed over a system of surfaces. System Research and Information Technologies. 2004. No. 2. pp. 104–128.
8. Podlipenko Yu. K., Pertsov A. S. Minimax estimation of the boundary value problem solution for biharmonic equations with Neumann-type boundary conditions. Bulletin of the University of Kiev. Series: Physics and Mathematics. 2008. No. 4. pp. 153–160.
9. Toselli A., Widlund O. Domain decomposition methods – algorithms and theory. Berlin : Springer, 1972. 450 p.
10. Lions J. L. Optimal control of systems governed by partial differential equations. Moscow : Nauka, 1972. 414 p.
11. Nakonechnyi A. G. Minimax estimation of functionals of the solutions to variational equations in Hilbert spaces. Kiev : Izdatelstvo Kievskogo gosudarstvennogo universiteta, 1985. 82 p.
12. Wilczynski M. Minimax prediction in the linear model with a relative squared error. Statistical Papers. 2012. No. 1. pp. 151–164.
13. Fadeev D. K., Fadeeva V. N. Computational methods of linear algebra. Moscow : Nauka, 1963. 734 p.
14. Roithmayr C. M., Hodges D. H. Dynamics: Theory and Application of Kane’s Method. Cambridge University Press, 2016. 536 p.
15. Rusnak I. Mean squares error based estimation of nonlinear system with prescribed convergence rate. The 57th Israel Annual Conference on Aerospace Science. Israel, 15–16 March 2017.
16. Rutkovskiy A. L., Dyunova D. N., Bigulov A. V., Yakovenko I. S. Use of mathematical modelling to understand the process of fluidized-bed roasting of zinc concentrates. Gornyy informatsionno-analiticheskiy byulleten. 2013. No. 3. pp. 217–222.
17. Rutkovskiy A. L., Kovaleva M. A., Alkatsev V. M., Makoeva A. K. Treatment of middlings in rotary kilns as part of a zinc production circuit: Understanding the process for optimisation. Vestnik of Voronezh State Technical University. 2018. Vol. 14, No. 4. pp. 18–22.
18. Rutkowski A. L., Bolotaeva I. I., Kovaleva M. A. Experiment Strategy and Parameter Evaluation at Fuzzy Measurement of Input Variables. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Sochi, Russia, 2019. pp. 1–7. DOI: 10.1109/ICIEAM.2019.8743095.

Language of full-text русский
Полный текст статьи Получить