Журналы →  Tsvetnye Metally →  2020 →  №1 →  Назад

MATERIALS SCIENCE
Название Effect of strontium and zirconium on the element distribution in and structure of the aluminium casting alloy AM4.5Kd (VAL10) and the properties of its components
DOI 10.17580/tsm.2020.01.09
Автор Ri E. H., Ri H., Deev V. B., Kolisova M. V.
Информация об авторе

Pacific National University, Khabarovsk, Russia:

E. H. Ri, Head of the Department of Casting and Metals Technology1, Doctor of Technical Sciences, e-mail: erikri999@mail.ru
H. Ri, Professor at the Department of Casting and Metals Technology1, Doctor of Technical Sciences, e-mail: opirus@bk.ru

M. V. Kolisova, Postgraduate Student of Casting, Laboratory Assistant at the Department of Casting and Metals Technology, e-mail: malisun1994@gmail.com

 

National University of Science and Technology MISiS, Moscow, Russia:
V. B. Deev, Leading Expert of the Department of Metals Fоrming, Doctor of Technical Sciences, e-mail: deev.vb@mail.ru

Реферат

Structural components in the Al – Sr and Al – Zr alloy alloys have been identified and their micro and nanohardness have been determined using X-ray microanalysis method. Al – Sr ligature (10 wt.%) consists of Al4Sr strontium aluminid (microhardness — 2799 Mpa and nanohardness — 3230 MPa), strontium eutectic A1 + Al4Sr (microhardness — 721 MPa), metal eutectic A1 + Al3Fe and pure aluminum (microhardness — 442 MPa and nanohardness — 744 MPa). The structure of the zirconium ligature A1 + Zr (wt.%: 1.62 02; 0.29 Si; 4.11 Zr; the rest — Al) consists of fine dispersed Al3Zr crystals, of α-solid silicon solution in aluminum, of α + Si eutectic. Microhardness of α-solid solution is 540.8 MPa and that of the eutectic — 983 MPa. Nanohardness of a-solid solution is 741 MPa, and that of + Al3Zr eutectic — 8300 MPa. Nanohardness of the Al3Zr aluminide is 13400 Mpa. The peculiarities of structure formation of the AM4.5Kd alloy components and their properties when modified with the increasing amount of strontium and zirconium (from 0.1 to 0.5 wt.% at a variation interval of 0.1 wt.%) have been investigated using the methods of optical and electro scanning microscopy and micro X-ray analysis. Strontium and zirconium, in the same way as scandium and rare-earth metals (Ce, La) contribute to the refinement of the structural components — -solid solution and eutectic. The regularities of changes in the hardness of the AM4.5Kd alloy, the microhardness and nature of elements distribution in the structural components depending on the amount of strontium and zirconium addition have been established. Microhardness of a-solid solution and hardness of AM4.5Kd alloy vary in extreme dependence with their maxima at 0.1 wt.% Sr and 0.2 wt.% Zr. Scientific background to the established dependencies has been given. Microhardness of the eutectic is under the influence of Scientific background to the established dependencies has been given. Microhardness of the eutectic is under the influence of the nature of elements distribution in the structural components of different composition and origin. Large amounts of strontium and zirconium (more than 0.1 and 0.2 wt.% respectively) cause the eutectic microhardness decrease due to the crystallization of a considerable quantity of high-hard alumides Sr, Cu, Zr, etc., which in its turn embrittles the eutectic and reduces the hardness of the AM4.5Kd alloy.

Ключевые слова Microhardness, hardness, eutectic and a-solid solution, modification, nanohardness
Библиографический список

1. Tahiri H., Samuel A. M., Doty H. W., Valtierra S., Samuel F. H. Effect of Sr-Grain Refiner-Si Interactions on the Microstructure Characteristics of Al – Si Hypereutectic Alloys. International Journal of Metalcasting. 2018. Vol. 12, Iss. 2. pp. 307–320.
2. Zhi-Xiang Huang, Hong Yan, Zhi-Wei Wang. Microstructure and mechanical properties of strontium-modified ADC12 alloy processed by heat treatment. Journal of Central South University. 2018. Vol. 25, Iss. 6. pp. 1263–1273.
3. Lui T., Morales S., Karkkainen M., Brewer L. N., Nastac L. et al. The Combined Effects of Sr Additions and Heat Treatment on the Microstructure and Mechanical Properties of High Pressure Die Cast A383 Alloy. TMS 2018: Light Metals. 2018. pp. 253–257.
4. Vandersluis E., Prabaharan N., Ravindran C. Solidification Rate and the Partial Modification of 319 Aluminum Alloy with Strontium. International Journal of Metalcasting. 2019. DOI: 10.1007/s40962-019-00239-w.
5. Zakharov V. V. On modification of aluminium alloys with a combination of scandium and zirconium. Metallovedenie i termicheskaya obrabotka metallov. 2014. No. 6. pp. 3–8.
6. Fuller C. B., Murray J. L., Seidman D. N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc 1 –xZrx) precipitates. Acta Materialia. 2005. Vol. 53, Iss. 20. pp. 5401–5413.
7. Knipling K. E., Karnesky R. A., Lee C. P., Dunand D. C. Seidman D. N. Precipitation evolution in Al – 0.1Sc, Al – 0.1Zr and Al – 0.1Sc – 0.1Zr (at.%) alloys during isochronal aging. Acta Materialia. 2010. Vol. 58. pp. 5184–5195.
8. Ghosh G., Asta M. First-principles calculation of structural energetic of Al–TM(TM=Ti, Zr, Hf) intermetallics. Acta Materialia. 2005. Vol. 53. pp. 3225– 3252.
9. Brodova I. G., Zamyatin V. M., Popel P. S., Esin V. O., Baum B. A. et al. Formation of metastable phases during Al-Zr alloy crystallization. Rasplavy. 1988. Vol. 2, Iss. 6. pp. 23–27.
10. Malek P., Janecek M., Smola B., Bartuska P., Plestil J. Structure and properties of rapidly solidified Al – Zr – Ti alloys. Journal of Materials Science. 2000. Vol. 35. pp. 2625–2633.
11. Popova E. A., Shubin A. B., Kotenkov P. V., Pastukhov E. A., Bodrova L. E. et al. Al – Ti – Zr master alloys: structure formation. Russian Metallurgy (Metally). 2012. Vol. 2012, Iss. 5. pp. 357–361.
12. Popova E. A., Kotenkov P. V., Pastukhov E. A., Shubin A. B. Master alloys Al – Sc – Zr, Al – Sc – Ti, and Al – Ti – Zr: their manufacture, composition, and structure. Russian Metallurgy (Metally). 2013. Vol. 2013, Iss. 8. pp. 590–594.
13. Kotenkov P. V., Popova E. A., Pastukhov E. A. Analysing the modification potential of prototype Al – Sc – Zr, Al – Sc – Ti, and Al – Ti – Zr alloys. Rasplavy. 2014. No. 4. pp. 21–27.
14. Rouxel B., Mester K., Vahid A., Lamb J., Langan T. Influence of the Al3(Sc,Zr) Dispersoids and the Stretching on the Natural Ageing Behavior of a Binary Al – 4 wt.%Cu Alloys. TMS Annual Meeting & Exhibition. TMS 2018: Light Metals. 2018. pp. 1601–1607.
15. Dorin T., Ramajayan M., Lamb Y., Langan T. Y. Chapter 17: Aluminium Scandium Alloys. In Fundamentals of Aluminium Metallurgy: Recent Advances. Elsevier, 2018.
16. Mester K., Rouxel B., Langan T., Lamb J., Barnett M. et al. Understanding the Co-precipitation Mechanisms of Al3(Sc,Zr) with Strengthening Phases in Al – Cu – Li Model Alloys. TMS Annual Meeting & Exhibition. TMS 2018: Light Metals 2018. pp. 223–239.
17. Yuhang Guo, Naiqin Zhao, Chunsheng Shi, Chunnian He, Jiajun li et al. Combined Effects of Pre-deformation and Pre-aging on the Mechanical Properties of Al – Cu – Mg Alloy with Sc and Zr Addition. Journal of Wuhan University of Technology-Materials Science Edition 2018. Vol. 33, Iss. 3. pp. 680–687.
18. Jun-Wen Zhao, An Guo, Hi Li, Xu Zhang, Jing Han et al. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions. China Foundry. 2017. Vol. 14, Iss. 3. pp. 188–193.
19. Sreekumar V. M., Eskin D. G. A New Al – Zr – Ti Master Alloy for Ultrasonic Grain Refinement of Wrought and Foundry Aluminum Alloys. JOM. 2016. Vol. 68, Iss. 12. pp. 3088–3093. DOI: 10.1007/s11837-016-2120-x.
20. Krivopalov D. S., Nikitin K. V., Nikitin V. I. et al. Production and application of nanostructured inoculants for aluminium alloys. Liteynoe proizvodstvo. 2014. No. 2. pp. 5–7.
21. Krivopalov D. S., Nikitin V. V., Nikitin K. V. Use of microcrystalline inoculants containing transition metals for aluminium and magnesium modification. Liteyshchik Rossii. 2015. No. 7. pp. 36–39.
22. GOST 11069–2001. Standard of the Republic of Belorus. Primary aluminium. Grades. Valid in the Republic of Belorus.
23. GOST 859–2014. Copper. Grades. Introduced: 01.07.2015.
24. GOST 1467–93. Cadmium. Specifications. Introduced: 01.01.1997.
25. Technical specification of Belarus Republic 100196035.005–2000. Coatingrefiming flux. URL: http://evtektika.com/ru/production.html#aluminium
26. Technical specification of Belarus Republic 14744129.004–98. Decontaminating tablet with modifying effect for hyper-eutectic silumins. URL: http://evtektika.com/ru/production.html#aluminium
27. GOST 8.748–2011. Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1. Test methods. Moscow, 2013. 24 p.
28. GOST 9377–81. Diamond indenters and hammers for metals and alloys hardness testing machines. Specifications. Introduced: 01.01.1982.
29. GOST R ISO 6507-1–2007. Metals and alloys. Vickers hardness test. Part 1. Test method. Moscow, 2008. 16 p.
30. Lyakishev N. P. State diagrams of binary metallic systems. Reference book: in 3 volumes. Vol. 1. Ed. by N. P. Lyakishev. Moscow : Mashinostroenie, 1996. 992 p. Vol. 53, Iss. 20. P. 5401–5413.

Language of full-text русский
Полный текст статьи Получить
Назад