Journals →  Obogashchenie Rud →  2019 →  #6 →  Back

TECHNOLOGICAL MINERALOGY
ArticleName Comparative activity evaluation for silica raw materials and photocatalytic composite materials based on them
DOI 10.17580/or.2019.06.05
ArticleAuthor Gubareva E. N., Ogurtsova Yu. N., Strokova V. V., Labuzova M. V.
ArticleAuthorData

Belgorod State Technological University named after V. G. Shukhov (Belgorod, Russia):

Gubareva E. N., Postgraduate, ekaterina.bondareva@rambler.ru
Ogurtsova Yu. N.1, Associate Professor, Candidate of Engineering Sciences, ogurtsova.y@yandex.ru
Strokova V. V., Head of Chair, Doctor of Engineering Sciences, Professor, vvstrokova@gmail.com
Labuzova M. V., Postgraduate, labuzova326@mail.ru

Abstract

Silica raw materials are widely used in many industries, especially in the manufacture of building materials. Among all rocks with rockforming silica minerals, chemogenic and biogenic sedimentary rocks are highly demanded as active (pozzolanic) mineral additives for composite binders. Raw materials containing amorphous silica are used to obtain composites of the TiO2–SiO2 system with high photocatalytic activity. High sorption properties of silica raw materials are critical in the process of photocatalysis, since these indirectly affect the interaction between respective organic compounds and the photocatalyst surface for their oxidation to the safe compounds of H2O and CO2. Therefore, it seems promising to use silica sedimentary rocks as a photocatalyst carrier in the manufacture of photocatalytic composite materials (PCM) used in cement concrete. This work covers the study of the DIASIL diatomite fine powder and gaize of the Alekseevskoe deposit, as well as PCM obtained on their basis, by the sol-gel deposition of the photocatalytic agent at various precursor/solvent ratios. Preparation of the gaize feed material required disintegration in a jaw crusher and a ball mill to the particle size of –100 μm. The results for the evaluation of the surface acidic properties, the degree of CaO absorption from the lime solution, and the photocatalytic activity of the PCMs synthesized indicate the high efficiency of using the silica raw material studied as a substrate for the TiO2 photocatalyst.
The study was carried out with a grant from the Russian Science Foundation (project No. 19-19-00263) using equipment based on the High Technology Center of BSTU named after V. G. Shukhov.

keywords Silica, ore preparation, diatomite, gaize, pozzolanic properties, sol-gel, calcination, titanium dioxide, photocatalysis
References

1. Flores-Vivian I., Pradoto R., Moini M., Kozhukhova M. I., Potapov V. V., Sobolev K. G. The effect of SiO2 nanoparticles on performance of cement-based materials. Vestnik BSTU named after V. G. Shukhov. 2018. No. 11. pp. 6–16.
2. Kotlyar V. D., Kozlov G. A., Zhivotkov O. I., Lapunova K. A. Prospects of the use of siliceous opoka-like rocks for productionof paving clinker of low-temperature sintering. Stroitelnye Materialy. 2018. No. 4. pp. 13–16.
3. Guvalov A. A., Kuznetsova T. V., Abbasova S. I. Improving the efficiency of cement binders with the use of silica-containing modifier. Stroitelnye Materialy. 2018. No. 11. pp. 56–59.
4. Cherkashina N. I., Pavlenko A. V. Influence of SiO2 crystal structure on the thermal cycle of polymer composites. Stroitelnye Materialy i Izdeliya. 2018. Vol. 1, No. 4. pp. 21–29.
5. Elistratkin M. Yu., Minakov S. V., Shatalova S. V. Composite binding mineral additive influence on the plasticizer efficiency. Stroitelnye Materialy i Izdeliya. 2019. Vol. 2, No. 2. pp. 10–16.
6. Voronov V. V. Composite binders with the use of marl for the production of foam concrete. Vestnik BSTU named after V. G. Shukhov. 2019. No. 1. pp. 21–27.
7. Glagolev E. S., Voronov V. V. Composite bonding with the use of the overcape mergel and foam concrete mixtures for monolithic construction. Vestnik BSTU named after V. G. Shukhov. 2018. No. 8. pp. 109–116.
8. Anderson C., Bard A. J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. The Journal of Physical Chemistry B. 1997. Vol. 101, No. 14. pp. 2611–2616.
9. Labuzova M. V., Gubareva E. N., Ogurtsova Y. N., Strokova V. V. The use of the photocatalytic composite material in the cement system. Stroitelnye Materialy. 2019. No. 5. pp. 16–21.
10. Yorov K. E., Sipyagina N. A., Lermontov S. A., Baranchikov A. E., Ivanov V. K., Borilo L. P. SiO2–TiO2 binary aerogels: Synthesis in new supercritical fluids and study of thermal stability. Zhurnal Neorganicheskoy Khimii. 2016. Vol. 61, No. 11. pp. 1391–1398.
11. Skvortsova L. N., Chukhlomina L. N., Minakova T. S., Sherstoboeva M. V. Investigation of acid-base and sorption properties of surface of metal–ceramic composites. Zhurnal Prikladnoy Khimii. 2017. Vol. 90, Iss. 8. pp. 1014–1019.
12. Nechiporenko А. P. Donor-acceptor properties of the surface of solid-phase systems. Indicator method. St. Petersburg: Lan’, 2017. 284 p.
13. Nelyubova V. V., Sivalneva M. N., Bondarenko D. O., Baskakov P. S. Study of activity of polydisperse mineral modifiers via unstandardized techniques. Journal of Physics: Conference Series. 2018. Vol. 118. Paper 012029.
14. Black L. Low clinker cement as a sustainable construction material. Sustainability of сonstruction materials. 2nd ed. Woodhead Publishing, 2016. pp. 415–457.
15. Donatello S., Tyrer M., Cheeseman C. R. Comparison of test methods to assess pozzolanic activity. Cement & Concrete Composites. 2010. Vol. 32. pp. 121–127.
16. Guo M.-Z., Maury-Ramirez A., Poon C. S. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. Journal of Cleaner Production. 2016. No. 112. P. 3583–3588.
17. Antoshkina Е. G., Smolko V. А. Determination of acidbase centers on the surface of quartz sand grains of some Russian deposits. Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. 2008. No. 7. pp. 65–68.
18. Yoldas B. E. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. Journal of Materials Science. 1986. Vol. 21. pp. 1087–1092.
19. Kravtsov A. A., Sysoev I. A., Blinov A. V., Yasnaya M. A., Gish E. A. Study of the influence of pH of the reaction medium on the acid-base properties of the surface of the TiO2 nanoparticles, synthesized by sol-gel method. Inzhenernyi Vestnik Dona. Electronic Scientific Journal. 2015. No. 1, Pt. 2. 11 p.
20. Kozlov D., Bavykin D., Savinov E. Effect of the acidity of TiO2 surface on its photocatalytic activity in acetone gas-phase oxidation. Catalysis Letters. 2003. Vol. 86, No. 4. pp. 169–172.
21. Wang Q., Zhang M., Chen C., Ma W., Zhao J. Photocatalytic aerobic oxidation of alcohols on TiO2: The acce-leration effect of a brønsted acid. Angewandte Chemie International Edition. 2010. No. 49. pp. 7976–7979.
22. He Z., Tang J., Shen J., Chen J., Song S. Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science. 2016. Vol. 364. pp. 416–427.
23. Lan D., Wu H., Puleo F., Liotta L. F. Bulk and surface characterization techniques of TiO2 and TiO2-doped oxides. Heterogeneous photocatalysis. Elsevier, 2019. pp. 57–86.
24. Kuzmenko S. N., Bashtannik P. I., Kuzmenko N. Ya., Igonina А. М., Evtushenko Ya. I. Influence of the nature of titanalkoxy-containing appret on the properties of polypropylene-based basalt plastics. Izvestiya Vuzov. Khimiya i Khimicheskaya Tekhnologiya. 2015. Vol. 58, Iss. 4. pp. 66–71.
25. Mittal K. L., Pizzi A. Handbook of sealant technology. Boca Raton: Taylor and Francis Group, 2009. 556 p.
26. Vaisberg L. А., Ustinov I. D. Introduction to mineral separation technology. St. Petersburg: Russkaya Kollektsiya, 2019. 168 p.
27. Gladkova V. V., Kazakov S. V., Karapetyan K. G., Otroshchenko A. A. Vibratory treatment of a particularly brittle mineral material. Obogashchenie Rud. 2018. No. 2. pp. 8–12. DOI: 10.17580/or.2018.02.02.

Language of full-text russian
Full content Buy
Back