Журналы →  Obogashchenie Rud →  2019 →  №6 →  Назад

Название Effects of microwave heating on the behavior of layered aluminosilicates
DOI 10.17580/or.2019.06.03
Автор Gerasimov A. M., Lazareva V. V., Arsentyev V. A.
Информация об авторе

REC «Mekhanobr-Tekhnika» (St. Petersburg, Russia):

Gerasimov A. M., Senior Researcher, Candidate of Engineering Sciences, gerasimov_am@npk-mt.spb.ru
Lazareva V. V., Senior Research Engineer, lazareva_vv@npk-mt.spb.ru
Arsentyev V. A., Chief Researcher, Doctor of Engineering Sciences, secretariat@npk-mt.spb.ru


Layered silicates, mainly composed by clay minerals, are associated with numerous mineral deposits, since these account for approximately 50 % of all sedimentary rocks. At the same time, layered silicates may be both non-metallic minerals (kaolin, bentonite, talc, vermiculite, glauconite) and components of the host rocks. The main factors behind their effect on the concentration processes are the dispersion ability and the anisotropy of mineral particles obtained by the disintegration of minerals. The presence of layered silicates with mobile crystal lattices in the mined ore significantly complicates both its wet and dry processing. Most methods aimed to reduce their impact on mineral processing have the same disadvantage: while solving the problems at some stages of the process flow, they seriously complicate respective downstream processes. A promising solution, aimed at the efficient use of resources in the processing of ores containing layered silicates, implies the inclusion of thermal and hydrothermal modification of such ores as the primary stages of the process chain. These modifications would ensure a reduction or elimination of the negative impact of such materials currently experienced in ore preparation, separation and dewatering and in the storage of processing products. The use of microwave heating enables changing the structure and processing behavior of ores containing layered silicates at lower material temperatures than in convective heating, which contributes to lower energy consumption for the thermal modification of ores.
Financial support was provided by the Russian Scientific Fund (project 18-17-00169).

Ключевые слова Layered silicates, clay ores, suspension rheology, thermal modification, microwave heating
Библиографический список

1. Gerasimov A. M., Arsentyev V. A. Layered silicates and their effects on mineral processing. Obogashchenie Rud. 2018. No. 5. pp. 22–28. DOI: 10.17580/or.2018.05.04.
2. Arsentyev V. A., Gerasimov A. M., Kotova E. L. Sylvinite ore thermochemical modification by means of super high frequency thermal treatment. Obogashchenie Rud. 2017. No. 6. pp. 3–8. DOI: 10.17580/or.2017.06.01.
3. Singh S., Gupta D., Jain V., Sharma А.K. Microwave
processing of materials and applications in manufacturing industries: A review. Materials and Manufacturing Processes. 2015. Vol. 30. pp. 1–29. DOI: 10.1080/10426914.2014.952028.
4. Obut A., Girgin J., Yorukoglu A. Microwave exfoliation of vermiculite and phlogopite. Clays and Clay Minerals. 2003. Vol. 51, Iss. 4. pp. 452–456. DOI: 10.1346/CCMN.2003.0510412.
5. Folorunso O., Dodds C., Dimitrakis G., Kingman S. Continuous energy exfoliation of vermiculite through microwave heating. International Journal of Mineral Processing. 2012. Vol. 114–117. pp. 69–79. DOI: 10.1016/j.minpro.2012.10.003.
6. Udoudo O., Folorunso O., Dodds C., Kingman S., Ure A. Understanding the performance of a pilot vermiculite exfoliation system through process mineralogy. Minerals Engineering. 2015. Vol. 82. pp. 84–91. DOI: 10.1016/j.mineng.2015.03.023.
7. Binnatova L. A., Shiralieva E. M., Yagubov A. I., Muradova N. M., Nuriev A. N. Heat treatment of bentonite and adsorption of methylene blue. Kondensirovannye Sredy i Mezhfaznye Granitsy. 2007. Vol. 9, No. 2. pp. 99–101.
8. Al-Bakain R. Z., Al-Degs Y. S., Issa A. A., Jawad A., Abu-Safieh K. A., Al-Ghouti M. A. Activation of kaolin with minimum solvent consumption by microwave heating. Clay Minerals. 2014. Vol. 49. pp. 667–681.
9. Zhenzhurist I. A. Microwave treatment of silicate-bonded molding sands with aluminum oxide additions. Liteinoye Proizvodstvo. 2015. No. 10. pp. 18–22.
10. Bakhia T., Khamizov R. Kh., Bavizhev M. D., Konov M. A. The effect of microwave treatment of clinoptilolite on its ion-exchange kinetic properties. Sorbtsionnye i Khromatograficheskie Protsessy. 2016. Vol. 16, No. 6. pp. 803–812.
11. Belchinskaya L. I., Khodosova N. A., Novikova L. A. Effect of different mtchanisms of heating of layered aluminosilicate on sorption processes. Sorbtsionnye i Khromatograficheskie Protsessy. 2017. Vol. 17, No. 5. pp. 781–791.
12. Leluk K., Orzechowski K., Jerieb K., Baranowskib A., Slonkac T., Glowinskic J. Dielectric permittivity of kaolinite heated to high temperatures. Journal of Physics and Chemistry of Solids. 2010. Vol. 71. pp. 827–831. DOI: 10.1016/j.pes.2010.02.008.
13. Pat. RU 2684380 С1 Russian Federation.

Language of full-text русский
Полный текст статьи Получить