Journals →  Tsvetnye Metally →  2019 →  #12 →  Back

ArticleName Analysing the chemical composition of man-made materials resultant from the production of primary aluminium in order to find cost-effective recycling techniques
DOI 10.17580/tsm.2019.12.03
ArticleAuthor Nemchinova N. V., Tyutrin A. A., Barauskas A. E.

Irkutsk National Research Technical University (INRTU), Irkutsk, Russia:

N. V. Nemchinova, Head of the Department of Non-Ferrous Metallurgy, Doctor of Technical Sciences, Professor, e-mail:
A. A. Tyutrin, Associate Professor at the Department of Non-Ferrous Metallurgy, Candidate of Technical Sciences (Eng.)
A. Е. Barauskas, Postgraduate Student at the Department of Non-Ferrous Metallurgy


The paper analyzes the formation of fine-grained fluorocarbon-containing technogenic materials the Irkutsk Aluminum Plant produces in large amounts (up to 9 thousand tons per annum per 1 ton of primary aluminum made in Soderberg-anode electrolyzers). It presents the analysis of the chemical composition of the sludge accumulated in the sludge dumps; the sludge consists of the electrolysis-produced cryolite-alumina melts of dust from electrofilters plus sludge from wet gas cleaning plus tailings of coal foam flotation. Samples of technogenic materials are analyzed by chemical, titrometric, and X-ray phase analysis using Russia-made DRON-3.0 X-ray diffractometer. Analysis reveals that sludge contains valuable elements such as fluorine, aluminum, and sodium. X-ray phase analysis reveals that the flotation tailings are 65% carbon, up to 15% cryolite, up to 10% chiolite and up to 10% aluminum oxide (α-Al2O3-corundum). Gas purification sludge samples are: 60% cryolite, 20% carbon, 10% corundum, possibly β-potassium cryolite, with traces of fluorite, quartz, and sodium sulfate. The electrofilter dust is 50% cryolite, 15% aluminum oxide (corundum) and chiolite, up to 10% carbon, with traces of fluorite and fluoric aluminum. Diffractogram analysis shows that the sludge from the sludge dumps is up to 78.7% cryolite, 11.9% carbon, 4.44% carbonate (dolomite), and traces of α-Al2O3-corundum and fluorite. Based on the analysis of the sludge elements and phases, the researchers propose a method to process it so as to extract the valuable components and to produce fluorine salts used in electrolysis, i. e. coprocessing by flotation with the coal foam removed off the electrolyte surface to produce secondary flotation cryolite.

keywords Aluminium production, technogenic raw materials, sludge gas cleaning, electrofilter dust, flotation tailings, sludge tank, flotation cryolite

1. Sizyakov V. M., Vlasov A. A., Bazhin V. Yu. Strategy tasks of the russian metallurgical complex. Tsvetnye Metally. 2016. No. 1. pp. 32–37. DOI: 10.17580/tsm.2016.01.05.
2. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in Power Consumption at UC RUSAL’s Smelters 2012–2014. Light Metals. 2015. pp. 757–762.
3. Radionov E. Yu., Tretiakov Ya. A., Nemchinova N. V. Relationship between the position of the anode rack and the magnetohydrodynamic parameters of the S-8BME cell. Tekhnologiya metallov. 2018. No. 4. pp. 31–39.
4. Dubovikov O. A., Brichkin V. N., Ris A. D., Sundurov A. V. Thermochemical activation of hydrated aluminosilicates and its importance for alumina production. Non-ferrous Metals. 2018. No. 2. pp. 11–16. DOI: 10.17580/nfm.2018.02.02.
5. Shepelev I. I., Golovnykh N. V., Sakhachev A. Yu. et al. Quality of sintered limestone-nepheline burden improved through the introduction of gypsoanhydrite man-made materials. Proceedings of Irkutsk State Technical University. 2018. Vol. 22, No. 5. pp. 225–239. DOI: 10.21285/1814-3520-2018-5-225-239.
6. Buzunov V., Mann V., Chichuk E., Frizorger V., Pinaev A., Nikitin E. The First Results of the Industrial Application of the EcoSoderberg Technology at the Krasnoyarsk Aluminium Smelter. Light Metals. 2013. pp. 573–576.
7. Zenkin E. Yu., Gavrilenko A. A., Nemchinova N. V. On waste processing at the primary aluminium production facility of RUSAL Bratsk OJSC. Proceedings of Irkutsk State Technical University. 2017. Vol. 21, No. 3. pp. 123–132. DOI: 10.21285/1814-3520-2017-3-123-132.
8. Grjotheim K., Welch В. Aluminium Smelter Technology. Dusseldorf : Aluminium Verlag, 1993. 260 р.
9. Shakhray S. G., Dekterev A. A., Minakov A. V., Neobyavlyayushchiy P. A., Sharypov N. A. Optimised anode casing for the Soderberg aluminium cell. Mekhanicheskoe oborudovanie metallurgicheskikh zavodov. 2018. No. 1. pp. 34–39.
10. Patrin R. K., Bazhin V. Yu. Spent Linings from Aluminum Cells as a Raw Material for the Metallurgical, Chemical, and Construction Industries. Metallurgist. 2014. Vol. 58, Iss. 7–8. pp. 625–629. DOI: 10.1007/s11015-014-9967-2.
11. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S., Somov V. Recycling Process Technology for Spent Pot Lining Generated by Aluminium Cells. Light metals. 2017. pp. 571–578. DOI: 10.1007/978-3-319-51541-0_71.
12. Rzhechitskiy E. P., Petrovskiy A. A., Nemchinova N. V., Ivanov A. A. Developing a recycling process for spent potlinings generated by aluminium cells. Proceedings of Irkutsk State Technical University. 2017. No. 9. pp. 201–209. DOI: 10.21285/1814-3520-2017-9-201-209.
13. Kulikov B. P., Istomin S. P. Recycling of aluminium industry waste. Krasnoyarsk : Klassik Tsentr, 2004. 480 p.

14. Terentiev V. G., Shkolnikov R. M., Grinberg I. S., Chernykh A. E., Zelberg B. I., Chalykh V. I. Aluminium production. Irkutsk : MANEB, 2001. 350 p.
15. Vetoshkin A. G. Gas purification processes and equipment : Learner’s guide. Penza : Izdatelstvo PGU, 2006. 201 p.
16. Galevskiy G. V., Kulagin N. M., Mintsis M. Ya. Enviromental protection and waste disposal in aluminium industry : Learner’s guide. Novosibirsk : Nauka. Sibirskoe predpriyatie RAN, 1997. 158 p.
17. Yasinskiy A. S., Polyakov P. V., Vlasov A. A., Yushkova O. V. High-tempe rature oxyfluoride suspensions and their behaviour. Proceedings of the 8th International Congress “Non-Ferrous Metals and Minerals”. 13–16 September 2016, Krasnoyarsk. Krasnoyarsk : Nauchno-innovatsionnyi tsentr, 2017. pp. 108–109.
18. Zelberg B. I., Ragozin L. V., Barantsev A. G. et al. Metallurgist’s handbook. Production of aluminium and aluminium alloys. Saint Petersburg : Izdatelstvo MANEB, 2013. 143 p.
19. Abramov A. A. Flotation techniques. Moscow : Nedra, 1984. 383 p.
20. Technical guidelines. Production of secondary cryolite. Production of flotation cryolite at the Shelekhov branch of RUSAL Bratsk. Technical guidelines, No. 445.07.01.02. Revision 6. Shelekhov, 2016. 28 p.
21. Vasiliev A. A., Tyutrin A. A. Production cycle analysis and analysing the properties of materials in metallurgical production : Learner’s guide. Irkutsk : Izdatelstvo IrNITU, 2017. 80 p.
22. GOST 10561–80. Technical artificial cryolite. Specifications. Introduced: 01.01.1982.
23. Kulikov B. P., Larionov L. M., Somov V. V. Burning of iron-rich dolomite with man-made fluorine-containing mineralizer. Ogneupory i tekhnicheskaya keramika. 2013. No. 1–2. pp. 39–41.
24. Petlin I. V., Malyutin L. N. Comprehensive recycling of fluorine-containing waste generated by aluminium industry in order to obtain hydrogen fluoride. Proceedings of Universities. Applied Chemistry and Biotechnology. 2014. No. 2. pp. 24–31.
25. Baranov A. N., Timkina E. V., Tyutrin A. A. Studies on fluorine leached from carbon-containing materials used in aluminium industry. Proceedings of Irkutsk State Technical University. 2017. Vol. 21, No. 7. pp. 143–151. DOI: 10.21285/1814-3520-2017-7-143-151.
26. Gulyaev A. V., Gavrilenko L. V., Baranov A. N., Nozhko S. I. Disposal of solid carbon-containing waste at an aluminium plant housing Soderberg cells. Ekologiya i promyshlennost Rossii. 2017. Vol. 21, No. 5. pp. 8–10. DOI: 10.18412/1816-0395-2017-5-8-10.
27. Nemchinova N. V., Yakushevich P. А., Yakovleva A. А., Gavrilenko L. V. Experiment for use of Bratsk aluminium plant technogenic waste as a reducing agent during cast iron smelting. Metallurgist. 2018. Vol. 62, Iss. 1–2. pp. 150–155. DOI: 10.1007/s11015-018-0637-7.
28. Nemchinova N. V., Mineev G. G., Tyutrin A. A., Yakovleva A. A. Utilization of Dust from Silicon Production. Steel in Translation. 2017. Vol. 47, Iss. 12. pp. 763–767. DOI: 10.3103/S0967091217120087.

Language of full-text russian
Full content Buy