Journals →  Obogashchenie Rud →  2019 →  #4 →  Back

ArticleName Technology for producing high-grade concentrates from waste metallurgical slags
DOI 10.17580/or.2019.04.10
ArticleAuthor Shadrunova I. V., Gorlova O. E., Kolodezhnaya E. V.

Institute of the Comprehensive Exploitation of Mineral Resources of the Russian Academy of Sciences (Moscow, Russia):

Shadrunova I. V., Head of Department, Doctor of Engineering Sciences, Professor,
Kolodezhnaya E. V., Leading Researcher, Candidate of Engineering Sciences,

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

Gorlova O. E., Associate Professor, Candidate of Engineering Sciences, Associate Professor,


The article presents the results of research on increasing the mass fraction of iron in substandard metal-containing products obtained in the processing of blast-furnace and open-hearth furnace slags. When the current and mature slags of Ural Steel JSC are processed using the standard technology, the resulting metal concentrates of various fractions contain only 45–50 % of iron. Respective mineralogical studies of these concentrates and of the grain-size distribution of their metal inclusions were used as the basis for the development of deep processing circuits designed for the metal-containing material of the fractions of 8–50 and 0–8 mm, recovered from openhearth slags, and fractions of 0–5 mm of blast-furnace slags. These processing circuits envisage recrushing of all fractions in free-impact crushers for the selective liberation of slagged metallic inclusions, air classification of the slag crushed to separate the fine classes with low iron content, and dry magnetic separation of the coarse classification product. As a result of deep processing, the mass fraction of iron in the metal concentrates was significantly increased: by 28–34 % in the fine fractions of 0–5 and 0–8 mm, and by 24.5 and 16 % respectively in the fractions of 10–50 and 0–10 mm obtained by processing the metal concentrate of 8–50 mm. Circuit diagrams were designed for the machines to process the metal-containing products of various fractions and specific energy consumption was established per ton of high-grade products for use in agglomeration and blast-furnace processes.
The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state assignment 5.8708.2017/8.9.

keywords Ferrous metallurgy slags, metal concentrates, metal inclusions, fractions, processing, crushing, air classification, dry magnetic separation

1. Yusupkhodzhaev A. A., Valiev Kh. R., Khudoyarov S. R., Matkarimov S. T. Efficiency rise of steel making production via additional recovery of valuable components from utilized slags. Chernye Metally. 2015. No. 1. pp. 19–22.
2. Wulfert H., Keybner M., Ludwig H. M., Adamczyk B., Schiffers A. Highly reactive cement components from steel slag for optimized ecology and economy. Chernye Metally. 2014. No. 5. pp. 50–56.
3. Kuhn M. Improving the use of steel making by-products — a step towards sustainability. Chernye Metally. 2013. No. 7. pp. 35–43.
4. Huang Yi, Guoping Xu, Huigao Cheng, Junshi Wang, Yinfeng Wan, Hui Chen. An overview of utilization of steel slag. Procedia Environmental Sciences. 2012. Vol. 16. pp. 791–801. DOI: 10.1016/j.proenv.2012.10.108.
5. Piatak N. M., Parsons M. B., Seal II R. R. Characteristics and environmental aspects of slag: A review. Applied Geochemistry. 2015. Vol. 57. pp. 236–266. DOI: 10.1016/j.apgeochem. 2014.04.009.
6. Schamari U. Environment protection and resource saving owing to iron and steel slags: an economical aspect. Chernye Metally. 2015. No. 7. pp. 54–56.
7. Sultamurat G. I., Boranbaeva B. M., Maksyutin L. A., Aktaeva N. A. Evaluation of possibility of converter slag utilization in the conditions of «ArcelorMittal Temirtau» JSC. Chernye Metally. 2015. № 11. pp. 26–31.
8. Shadrunova I. V., Gorlova O. E., Orekhova N. N., Kolodezhnaya E. V. Resource saving and liquidation of accumulated environmental damage in the old industrial regions during the processing of slags of metallurgical production. Gorny Informatsionno-Analiticheskiy Byulleten. 2018. No. 1 (Special issue S1). С. 300–320. DOI: 10/25018/0236-1493-2018-1-1-300-320.
9. Sorokin Yu. V., Demin B. L. State of slag processing and its development prospects. Stal. 2010. No. 5. pp. 136–140.
10. Demin B. L., Sorokin Yu. V., Zimin A. I. Technogenic formations from metallurgical slags as object of complex processing. Stal. 2000. No. 11. pp. 99–102.
11. Gladskikh V. I., Bochkarev A. V., Sukinova N. V., Murzina Z. N., Neverovskaya I. P. Experience of metallurgical slag processing in MMK OJSC. Stal. 2012. No. 2. pp. 152-153.
12. Gladskikh V. I., Grom S. V., Emelin K. A., Chizhevskiy V. B., Shavakuleva O. P. State and development prospects of the raw material base of Magnitogorsk Iron & Steel Works. Gornyi Zhurnal. 2012. No. 3 (Special issue). pp. 12–14.
13. Chizhevskiy V. B., Grishin I. A., Shavakuleva O. P. Development of high-efficient technologies of deep processing and comprehensive utilization of steel slags. Chernye Metally. 2016. No. 9. pp. 18–23.
14. Batalin B. S., Kraft V. G., Pastukhov A. I., Kuryakova N. B. Main properties and ways of using ChMP dump blast furnace slag. Izvestiya Vuzov. Stroitelstvo. 2002. No. 4. pp. 47–50.
15. Gudim Yu. A., Golubev A. A. Effective ways of recycling metallurgical production of the Urals. Ekologiya i Promyshlennost’ Rossii. 2008. No. 12. pp. 4–8.
16. Yakushev E. V., Zaitsev V. A., Cherkasov E. G., Uvarov M. G., Ziryanov V. V., Maistrenko N. A., Fuchs A. Yu. Experience of using products of metallurgical slags processing in sintering and BF production. Metallurg. 2010. No. 2. pp. 40–41.
17. Ozhogina E. G., Yakushina O. A., Kozlov A. P. Mineralogical peculiarities and recycling prospects of nickel-containing metallurgical slags. Obogashchenie Rud. 2017. No. 3. pp. 49–56. DOI: 10.17580/or.2017.03.08.
18. Gorbatova E. A., Ozhogina E. G., Lebedev A. N., Emelyanenko E. A., Kharchenko A. S., Selivanov V. N. Justifying the integration of mineralogical analysis methods when studying metallurgical slags. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G. I. Nosova. 2017. Vol. 15, No. 4. pp. 31–39. DOI: 10.18503/1995-2732-2017-15-4-31-39.
19. Shen H., Forssberg E., Nordström U. Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery. Resources, Conservation and Recycling. 2004. Vol. 40, Iss. 3. pp. 245–271. DOI: 10.1016/S0921-3449(03)00072-7.
20. Yildirim I., Prezzi M. Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering. 2011. Vol. 2011. Article ID 463638. 13 p. DOI: 10.1155/2011/463638.
21. Revnivtsev V. I., Gaponov G. V., Zarogatskiy L. P., Kostin I. M., Finkelshteyn G. A., Khopunov E. A., Yashin V. P. Selective destruction of materials. Moscow: Nedra, 1988. 286 p.
22. Paladeev N. I. Impact crushers. Izvestiya Vuzov. Gornyi Zhurnal. 1996. No. 10–11. pp. 139–145.
23. Khopunov E. А. Selective disintegration as a particular case of ores structural disintegration. Obogashchenie Rud. 2010. No. 6. pp. 27–33.
24. Vorob’ev V. A., Ivanov E. N., Larionov A. N., Ryazanov M. A. Dry technologies of ore preparation as a tool for increasing extraction of valuable components. IMPC 2018 Congress Proceedings. September 17–19, 2018, Moscow, Russia. pp. 708–715.
25. Shadrunova I. V., Ozhogina E. G., Kolodezhnaya E. V., Gorlova O. E. Slag disintegration selectivity. Journal of Mining Science. 2013. Vol. 49, No. 5. pp. 831–838. DOI: 10.1134/S1062739149050183.
26. Shadrunova I. V., Gorlova O. E., Kolodezhnaya E. V., Kutlubaev I. M. Metallurgical slag disintegration in centrifugal impact crushing machines. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh. 2015. No. 2. pp. 149–155.

Language of full-text russian
Full content Buy