Журналы →  Chernye Metally →  2019 →  №8 →  Назад

Metal science and metallography
Название Enhancing of standard practice for extreme value analysis to evaluate the nature of large non-metallic inclusions in superduty stells
Автор A. A. Kazakov, A. I. Zhitenev, M. A. Salynova
Информация об авторе

St. Petersburg Polytechnic University (St. Petersburg, Russia):

A. A. Kazakov, Dr. Eng., Prof., E-mail: kazakov@thixomet.ru
A. I. Zhitenev, Engineer, E-mail: zhitenev@thixomet.ru
M. A. Salynova, Engineer

Реферат

Practice for extreme value analysis realized in ASTM E 2283 has been discussed on the examples for assessing the nonmetallic inclusions in superduty steels. An original interpretation of the measurement results obtained according to ASTM E 2283 standard has been proposed, which allows extending the limits of applicability of this standard to exogenous inclusions. It has been shown that the procedures of ASTM E 2283 can be used to identify random single exogenous inclusions among all the detected nonmetallic inclusions, as well as to predict the size of the maximum possible exogenous inclusions if the latter have a systemic source of penetration into the melt and are described by the corresponding Gumbel distribution. It has been found that the modern level of secondary metallurgy enables to obtain steels with low endogenous nonmetallic impurity rating, however, gross irregularities of the casting technology can lead to coarse exogenous nonmetallic inclusions of the fi nished metal.

Ключевые слова Superduty steel, single large non-metallic inclusions, indigenous, exogenous, metallographic assessment, extreme value analysis
Библиографический список

1. Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Tokyo, Yokendo Ltd., 1993. 384 p.
2. Durynin V. А., Solntsev Yu. P. Study and improvement of production technology in order to increase the resource of steel products made of large critical duty forgings. Saint Petersburg: Khimizdat, 2006. 272 p.
3. Kazakov А. А., Zhitinev А. I., Salynova М. А. Estimation of single large nonmetallic inclusions in steel using statistics of extreme values. Chernye Metally. 2018. No. 11. pp. 70–74.
4. Gumbel E. J. Statistics of extremes. New York: Columbia University Press, 1958. 375 p.
5. Murakami Y. Inclusion Rating by Statistics of Extreme Values and Its Application to Fatigue Strength Prediction and Quality Control of Materials. Journal of Research of the National Institute of Standards and Technology. 1994. Vol. 99. No. 4. pp. 345–351.
6. ASTM E2283-08 (2014). Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features. 2008. 11 p.
7. Lipiński T., Wach A., Detyna E. Influence of large non-metallic inclusions on bending fatigue strength hardened and tempered steels. Advances in material science. 2015. Vol. 15. No. 3 (45). pp. 33–40.
8. Gubenko S. I., Parusov V. V., Derevyanchenko I. V. Non-metallic inclusions in steel. Donetsk: Art-Press, 2005. 536 p.
9. ASTM E1245-03. Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. 2003. 8 p.
10. AAR Specifi cation M-107/M-208. Standard for Wheels, Wrought Carbon Steel. 2017.
11. Kazakov А. А., Zhitinev А. I., Kolpishon E. Yu., Salynova М. А. Nonmetallic inclusions quantitative assessment for forgings made from super large steel ingot. Chernye Metally. 2018. No. 12. pp. 50–56.
12. Kanbe Y., Karasev A., Todoroki H., Jonsson P. G. Application of Extreme value analysis for two and three dimensional determinations of the largest inclusion in metal samples. ISIJ Int. 2011. Vol. 51. Iss. 4. pp. 593–602.
13. Kanbe Y., Karasev A., Todoroki H., Jonsson P. G. Analysis of Largest Sulfide Inclusions in Low Carbon Steel by Using Statistics of Extreme Values. Steel Research International. 2011. Vol. 82, Iss. 4. pp. 313–322.
14. Beretta S., Murakami Y. Largest-Extreme-Value Distribution Analysis of Multiple Inclusion Types in Determining Steel Cleanliness. Metallurgical and Material Transactions B. 2001. Vol. 32, Iss. 3. pp. 517–523.
15. Schmiedt A. B., Dickert H. H., Bleck W, Kamps U. Multivariance extreme value analysis and its relevance in a metallographical application. Journal of Applied Statistics. 2013. Vol. 41. pp. 582–595.
16. Beretta S., Anderson C. W. Extreme value statistics in metal fatigue. Societa Italiana di statistica: Atti della XLI Riunione Scientifica. 2002. pp. 251–260.
17. Ekengren J., Bergstrom J. Extreme value distributions of inclusions in six steels. Extremes. 2011. No. 15. pp. 257–265.
18. Zhang J. M., Zhang J. F., Yang Z. G., Li G. Y., Yao G., Li S. X., Hui W. J., Weng Y. Q. Estimation of maximum inclusions size and fatigue strength in high-strenght ADF1 steel. Materials Science and Engineering. 2005. Vol. 394, No. 1–2. pp. 126–131.
19. Trushnikova А. S. Using methods of mathematical statistics to predict the content of large non-metallic inclusions in steel. Proceedings of the V Russian conference of young scientists employees. Promising materials. Special issue, 2008. pp. 244–246.
20. Kazakov A. A., Zhitenev A. I., Ryaboshuk S. V. Interpretation and Classification of Nonmetallic Inclusions. Materials Performance and Characterization. 2016. Vol. 5, Iss. 5. pp. 535–543.
21. Kazakov A. A., Zhitenev A. I. Assessment and interpretation of nonmetallic inclusions in steel. CIS Iron and Steel Review. 2018. Vol. 16. pp. 33–38.
22. Thomas B. G. Mathematical Modeling of the Continuous Slab Casting Mold: A State of the Art. Review in 74th Steelmaking Conference Proceedings. 1991. Vol. 74. pp. 69–82.
23. Titova Т. I., Bocharov S. А., Ratushev D. V., Malykhina О. Yu., Afanasev L. Т., Efimov S. V. The study of non-metallic inclusions in the metal of the reactor vessel blanks made of steel 15Kh2NMFA (A) depending on the technology for large ingots production. Proceedings of the X International scientific and technical conference “Ensuring the safety of nuclear power plants with WWER”. (Podolsk, 16–19 May 2017).

Language of full-text русский
Полный текст статьи Получить
Назад