Journals →  Tsvetnye Metally →  2019 →  #7 →  Back

ArticleName Cold clad rolling of Al-Ni nanopowders between the layers of aluminium foil to produce high-strength high-density reactive materials
DOI 10.17580/tsm.2019.07.11
ArticleAuthor Sarkisov S. S.

National University of Science and Technology MISiS, Moscow, Russia:

S. S. Sarkisov, Senior Lecturer at the Department of Physics, e-mail:


A study was conducted on the process of cold clad rolling by pre-pressing mechanically activated Al and Ni nanopowders in between the layers of aluminium foil resulting in the production of high-strength high-density reactive composite material. The authors examined the microstructure of transverse sections in the resultant specimens after the pre-pressing of mechanically activated Al and Ni nanopowders, as well as the following three passes of cold clad rolling in between the layers of aluminium foil. The authors applied the method of differential scanning calorimetry to analyse the reactivity of this material after each pass. Comparative data for the specimen are provided following the pre-pressing of mechanically activated Al – Ni nanopowders, and a relationship was analysed between the temperature and heating rate and the formation of the Al3Ni, Ni2Al3 and NiAl phases. The resultant reactive material Al/Al – Ni/Al is of relatively high strength, which is indicated by the results of uniaxial tension tests and their comparison with the metals forming the Al and Ni composite material of the foil. The resultant reactive composite material can be used for welding and soldering of heterogenous materials, as a material initiating combustion in solid fuels, as well as for creating the foaming effect in porous composites.

keywords Cold clad rolling, mechanically activated nanopowders, aluminium foil, differential scanning calorimetry, transmission electron microscope, mechanical properties

1. Novikov I. I., Zolotorevskiy V. S., Portnoy K. K., Belov N. A., Livanov D. V., Medvedeva S. V., Aksenov A. A., Evseev Yu. V. Metals science : textbook. Moscow : MISiS, 2009. Vol. 1. pp. 425–429.
2. Kondratenko A. N., Golubkova T. A. Promising technologies for production and applications of nanostructured metal matrix composites (Review). Konstruktsii iz kompozitsionnykh materialov. 2009. No. 1. pp. 24–28.
3. Gladkovskiy S. V., Trunina T. A., Kokovikhin E. A., Kokovikhin S. V., Kokovikhin I. S. Method of making metal-matrix composite material. Patent RF, No. 2528926. Applied: 30.04.2013. Published: 20.09.2014. Bulletin No. 26. 8 p.
4. Mukasian A. S., Rogachev A. S., Sarkisov S. S., Vadchenko S. G., Nepapushev A. A. Method for obtaining nanostructured reaction foil. Patent RF, No. 2536019. Applied: 20.06.2013. Published: 20.12.2014. Bulletin No. 35. 7 p.
5. Karpov M. I., Korzhov V. P., Vnukov V. I., Zverev V. N., Zheltyakova I. S. Superconducting properties and microstructure of the composite tape with nanoscale layers of alloy Nb –30 wt.% Zr. Fizika i khimiya obrabotki materialov. 2009. No. 2. pp. 5–9.
6. Kaputkin D. E., Sarkisov S. S., Kaputkina N. A. Aluminium matrix composite hardened with carbon nanotubes produced by cold clad rolling. Tekhnologiya legkikh splavov. 2018. No. 4. pp. 101–103.
7. Akopyan T. K., Belov N. A., Letyagin N., Naumova E. A. Nanostructured Al matrix composites based on Al – Ni – La. Material Letters. 2019. Vol. 245. pp. 110–113.
8. Tiwary C. S., Kashyap S., Kim D. H., Chattopadhyay K. Al based ultrafine eutectic with high room temperature plasticity and elevated temperature trength. Materials Science and Engineering: A. 2015. Vol. 639. pp. 359–369. DOI: 10.1016/j.msea.2015.05.024.
9. Morozov N. A., Sarkisov S. S. Understanding the possibility of producing self-foaming composite material by accumulative multi-layered rolling. Proceedings of the 6th International Science & Technology Conference among Young Researchers and Students “High Technology in Modern Science and Technology. HTMST-2017”. 27–29 November 2017. pp. 78–79.
10. Belov N. A., Naumova E. A., Akopyan T. K. Aluminium based eutectic alloys: New alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p.
11. Suwanpreecha C., Toinin J. P., Michi R. A., Pandee P., Dunand D. C., Limmaneevichitr C. Strengthening mechanisms in AlNiSc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Materialia. 2019. Vol. 164. pp. 334–346. DOI: 10.1016/j.actamat.2018.10.059.
12. Pomogaylo A. D. Polymer-immobilized nanosized and clustered metal particles. Uspekhi khimii. 1997. Vol. 66, No. 8. pp. 750–791.
13. Suwanpreecha C., Pandee P., Patakham U., Limmaneevichitr C. New generation of eutectic Al Ni casting alloys for elevated temperature services. Materials Science and Engineering: A. 2018. Vol. 709. pp. 46–54. DOI: 10.1016/j.msea.2017.10.034.
14. Baras F., Turlo V., Politano O., Vadchenko S. G., Rogachev A. S., Mukasyan A. S. SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations. Advanced Engineering Materials. 2018. Vol. 20, Iss. 8. DOI: 10.1002/adem.201800091.
15. Mukasyan A. S., Rogachev A. S. Combustion Synthesis: Mechanically Induced Nanostructured Materials. Journal of Materials Science. 2017. Vol. 52, Iss.20. P. 11826–11833.
16. Rogachev A. S. The waves of exothermic reactions in multilayered nanofilms. Uspekhi khimii. 2008. Vol. 77, No.1. pp. 22–38.
17. GOST 745–2014. Aluminium foil for packing. Specifications. Introduced 2015.09.01.
18. Minseok Oh, Min Chul Oh, Deokhyun Han, Sang-Hyun Jung, Byungmin Ahn. Exothermic Reaction Kinetics in High Energy Density Al – Ni with Nanoscale Multilayers Synthesized by Cryomilling. Metals. 2018. Vol. 8, Iss. 2. p. 121.
19. Shuck C. E., Mukasyan A. S. Reactive Ni/Al Nanocomposites: Structural Characteristics and Activation Energy. Journal of Physical Chemistry A. 2017. Vol. 121. pp. 1175–1181.

Language of full-text russian
Full content Buy