Journals →  Tsvetnye Metally →  2019 →  #7 →  Back

ArticleName Crystalline structure generation and phase transitions in composite oxides Ln2Me2O7 (Ln = La – Lu; Me = Ti, Zr, Hf)
DOI 10.17580/tsm.2019.07.07
ArticleAuthor Popov V. V., Tsarenko N. A., Yastrebtsev А. А., Menushenkov A. P.

National Research Nuclear University MEPhI, Moscow, Russia:

V. V. Popov, Senior Researcher, e-mail:
А. А. Yastrebtsev, Postgraduate Student, e-mail:
A. P. Menushenkov, Head of Department, Professor, e-mail:


VNIIKhT, Moscow, Russia:

N. A. Tsarenko, Lead Researcher, e-mail:


Using X-ray diffraction and Raman spectroscopy, the authors of this paper investigated the formation and evolution of crystalline structure in complex oxides Ln2Me2O7 (Ln = La – Lu; Me = Ti, Zr, Hf), which occur as a result of calcination of amorphous precursors synthesized through coprecipitation from metal salt solutions. It is shown that the crystallization parameters and further phase transformations are largely governed by the cation radius ratio γ = rLn3+/rMe4+. In the case of zirconates and hafnates of rare earth elements (REE), nanocrystalline powders with fcc fluorite are initially formed during amorphous precursor crystallization. Further increase of the annealing temperature to ≥1,000 oC in the case of Ln = La – Dy leads to the phase transition fluorite → pyrochlore, the temperature of which rises and the intensity decreases as the REE radius gets smaller. The powders containing REEs with smaller cation radii retain their fluorite structure within the entire tempe rature range studied. For Yb2Zr2O7, it was found that δ-phase was formed. In the case of rare earth titanates (Ln = Sm – Yb), crystallization of amorphous precursors directly resulted in a pyrochlore structure. For titanates of REEs with big cation radii (Ln = La – Nd), generation of layered perovskites was observed. Crystallite growth activation energies were calculated for the above mentioned types of phase transitions, which helped explain the sequence of structural transformations (amorphous phase  fluorite → pyrochlore) observed in rare earth zirconates and hafnates from the energy point of view. A good correlation was found between the X-ray diffraction and Raman spectroscopy data. It was concluded that Raman spectroscopy provides a more sensitive technique (versus X-ray diffraction) for studying the phase transitions occurring in complex rare earth oxides.

keywords Сomplex oxides, rare earth elements, crystallization, phase transition, pyrochlore, fluorite, layered perovskite, δ-phase, X-ray diffraction, Raman spectroscopy

1. Simeone D., Thorogood G. J., Huo D., Luneville L., Baldinozzi G., Petricek V., Porcher F., Ribis J., Mazerolles L., Largeau L., Berar J. F., Surble S. Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography. Scientific Reports. 2017. Vol. 7. pp. 1–7.
2. Shamblin J., Tracy C. L., Palomares R. I., O'Quinn E. C., Ewing R. C., Neuefeind J., Feygenson M., Behrens J., Trautmann C., Lang M. Similar local order in disordered fluorite and aperiodic pyrochlore structures. Acta Materialia. 2018.Vol. 144. pp. 60–67.
3. Maram P. S., Ushakov S. V., Weber R. J. K., Navrotsky A., Benmore C. J. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids — a thermodynamic perspective. Scientific Reports. 2018. Vol. 8, No. 1. p. 10658.
4. Pilania G., Puchala B., Uberuaga B. P. Distortion-stabilized ordered structures in A2BB’O7 mixed pyrochlores. Computational Materials Science. 2019. Vol. 5. (7). pp. 1–9.
5. Pan W., Phillpot S., Wan C., Chernatynskiy A., Qu Z. Low thermal conductivity oxides. Materials Research Society Bulletin. 2012. Vol. 37, No. 10. pp. 917–922.
6. Yamamura H., Nishino H., Kakinuma K., Nomura K. Electrical conductivity anomaly around fluorite – pyrochlore phase boundary. Solid State Ionics. 2003. Vol. 158, No. 3–4. pp. 359–365.
7. Risovany V., Zakharov A., Muraleva E., Kosenkov V., Latypov R. Dysprosium hafnate as absorbing material for control rods. Journal of Nuclear Materials. 2006. Vol. 355, No. 1-3. pp. 163–170.
8. Ewing R., Weber W., Lian J. Nuclear waste disposal e pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. Journal of Applied Physics. 2004. Vol. 95, No. 11. pp. 5949–5071.
9. Andrievskaya E. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. Journal of the European Ceramic Society. 2008. Vol. 28. pp. 2363–2388.
10. Stanek C. R., Jiang C., Uberuaga B. P., Sickafus K. E., Cleave A. R., Grimes R. W. Predicted structure and stability of A4B3O12 δ-phase compositions. Physical Review B. 2009. Vol. 80, No. 17. p. 174101.
11. Sickafus K. E., Grimes R. W., Valdez J. A., Cleave A. R., Tang M., Ishimaru M., Corish S. M., Stanek C. R., Uberuaga B. P. Radiation–induced amorphization resistance and radiation tolerance in structurally related oxides. Nature Materials. 2007. No. 6. pp. 217–223.
12. Popov V. V., Petrunin V. F., Korovin S. A., Menushenkov A. P., Kashurnikova O. V., Chernikov R. V., Yaroslavtsev A. A., Zubavichus Ya. V. Formation of Nanocrystalline Structures in the Ln2O3 – MO2 Systems (Ln = Gd, Dy; Me = Zr, Hf). Russian Journal of Inorganic Chemistry. 2011. Vol. 56, No. 10. pp. 1538–1544.
13. Popov V. V., Menushenkov A. P., Yaroslavtsev A. A., Zubavichus Y. V., Gaynanov B. R., Yastrebtsev A. A., Leshchev D. S., Chernikov R. V. Fluoritepyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La – Lu). Journal of Alloys and Compounds. 2016. Vol. 689. pp. 669–679.
14. Popov V. V., Menushenkov A. P., Gaynanov B. R., Ivanov A. A., d'Acapito F., Puri A., Shchetinin I. V., Zheleznyi M. V., Berdnikova M. M., Pisarev A. A., Yastrebtsev A. A., Tsarenko N. A., Arzhatkina L. A., Horozova O. D., Rachenok I. G., Ponkratov K. V. Formation and evolution of crystal and local structures in nanostructured Ln2Ti2O7 (Ln = Gd – Dy). Journal of Alloys and Compounds. 2018. Vol. 746. pp. 377–390.
15. Petricek V., Dusek M., Palatinus L. Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie. 2014. Vol. 229, No. 5. pp. 345–352.
16. Zu X. Т., Li N., Gao F. First-principles study of structural and energetic properties of A2Hf2O7 (A = Dy, Ho, Er) compounds. Journal of Applied Physics. 2008. Vol. 104. p. 043517.
17. Shukla S., Seal S., Vij R., Bandyopadhyay S. Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Letters. 2003. Vol. 3, No. 3. pp. 397–401.
18. Kumar S., Gupta H. First principles study of dielectric and vibrational properties of pyrochlore hafnates. Solid State Sciences. 2014. Vol. 14, No. 10. pp. 1405–1411.

Language of full-text russian
Full content Buy