Journals →  Obogashchenie Rud →  2019 →  #3 →  Back

ArticleName Beneficiation studies on lean grade copper ore by selective flocculation and flotation techniques
DOI 10.17580/or.2019.03.03
ArticleAuthor Mweene L., Subramanian S.

Indian Institute of Science, Bangalore, India:

Mweene L., Research Student

Subramanian S., Professor, Ph. D.,


Low grade copper ore from Mpanda Mineral Field (MMF) was subjected to selective dispersion–flocculation and flotation processes to beneficiate chalcopyrite. The mineralogical characterization indicated that chalcopyrite, pyrite and quartz were the main minerals. The adsorption of acacia gum (AG) on chalcopyrite exhibited an L2 type isotherm of the Giles classification, with the maximum adsorption at pH 2.3, while its adsorption on silica was negligible. The FTIR spectroscopic investigations indicated that hydrogen bonding and chemical interaction forces were responsible for the adsorption of AG on chalcopyrite. The ground MMF ore was subjected to selective dispersion–flocculation using 30 ppm of sodium trisilicate (STS) and 120 ppm of AG yielding the chalcopyrite grade of 11.5 % after three desliming stages. The flotation of the flocculated fraction was carried out using potassium amyl xanthate and potassium ethyl xanthate (1 : 1) 30 g/t, Na2S 40 g/t as the sulphidising agent, pH 10.3, 2.5 min as the flotation time and methyl isobutyl carbinol (MIBC) as the frother yielding the copper grade and recovery of 21.3 and 93.3 % respectively while that of silica was 5.3 and 4.8 % respectively in the rougher concentrate. The cleaner flotation of the rougher concentrate yielded the copper grade and recovery of 27.3 and 87.2 % respectively, while that of silica was 1.2 and 0.5 % respectively in the cleaner concentrate.

keywords Adsorption, zeta potential, acacia gum, chalcopyrite, silica

1. Sresty G. C., Somasundaran P. Selective flocculation of synthetic mineral mixtures using modified polymers. International Journal of Mineral Processing. 1980. Vol. 6, Iss. 4. pp. 303–320. DOI: 10.1016/0301-7516(80)90027-7.
2. Hirt W. C., Rice D. A., Gum K. Selective flocculation of zinc concentrate to reduce silica contamination. Mining, Metallurgy & Exploration. 1994. Vol. 11, Iss. 3. pp. 174–177. DOI: 10.1007/BF03403059.
3. Saravanan L., Subramanian S. Surface chemical properties and selective flocculation studies on alumina and silica suspensions in the presence of xanthan gum. Minerals Engineering. 2016. Vol. 98. pp. 213–222. DOI: 10.1016/j.mineng.2016.08.022.
4. Kemppainen K., Suopajärvi T., Laitinen O., Ämmälä A., Liimatainen H., Illikainen M. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers. Chemical Engineering Science. 2016. Vol. 148. pp. 256–266. DOI: 10.1016/j.ces.2016.04.014.
5. Randall R. C., Phillips G. O., Williams P. A. Fractionation and characterization of gum from acacia Senegal. Food Hydrocolloids. 1989. Vol. 3, Iss. 1. pp. 65–75. DOI: 10.1016/S0268-005X(89)80034-7.
6. Chang Y., Hu Y., McClements D. J. Competitive adsorption and displacement of anionic polysaccharides (fucoidan and gum arabic) on the surface of protein-coated lipid droplets. Food Hydrocolloids. 2016. Vol. 52. pp. 820–826. DOI: 10.1016/j.foodhyd.2015.08.023.
7. Mweene L., Subramanian S. Selective dispersion-flocculation and flotation studies on a siliceous copper ore. Physicochemical Problems of Mineral Processing. 2018. Vol. 54, Iss. 4. pp. 1282–1291. DOI: 10.5277/ppmp18186.
8. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 1956. Vol. 28, Iss. 3. pp. 350–356. DOI: 10.1021/ac60111a017.
9. Nyamekye G. A., Laskowski J. S. Adsorption and electrokinetic studies on the dextrin-sulfide mineral interactions. Journal of Colloid and Interface Science. 1993. Vol. 157, Iss. 1. pp. 160–167. DOI: 10.1006/jcis.1993.1171.
10. Mitchell T. K., Nguyen A. V., Evans G. M. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Advances in Colloid and Interface Science. 2005. Vol. 114–115. pp. 227–237. DOI: 10.1016/j.cis.2004.08.009.
11. Rath R. K., Subramanian S. Studies on adsorption of guar gum onto biotite mica. Minerals Engineering. 1997. Vol. 10, Iss. 12. pp. 1405–1420. DOI: 10.1016/S0892-6875(97)00130-1.
12. Parks G. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chemical Review. 1965. Vol. 65, Iss. 2. pp. 177–198. DOI: 10.1021/cr60234a002
13. Antonio A. J., Baldo J. B. The behavior of zeta potential of silica suspensions. New Journal of Glass and Ceramics. 2014. Vol. 4. pp. 29–37. DOI: 10.4236/njgc.2014.42004.
14. Steger H. F., Desjardins L. E. Oxidation of sulphide minerals, 4. Pyrite, chalcopyrite and pyrrhotite. Chemical Geology. 1978. Vol. 23, Iss. 1–4. pp. 225–237. DOI: 10.1016/0009-2541(78)90079-7.
15. Socrates G. Infrared characteristic group frequencies. New York: John Wiley & Sons Ltd, 1980. 153 p.
16. Derycke V., Kongolo M., Benzaazoua M., Mallet M., Barrès O., De Donato P., Bussière B., Mermillod-Blondin R. Surface chemical characterization of different pyrite size fractions for flotation purposes. International Journal of Mineral Processing. 2013. Vol. 118. pp. 1–14. DOI: 10.1016/j.minpro.2012.10.004.
17. Reyes-Bozo L., Escudey M., Vyhmeister E., Higueras P., Godoy-Faúndez A., Luis Salazar J., Valdés-González H., Wolf-Sepúlveda G., Herrera-Urbina R. Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies. Minerals Engineering. 2015. Vol. 78. pp. 128–135. DOI: 10.1016/j.mineng.2015.04.021.
18. Daoub R. M. A., Elmubarak A. H., Misran M., Hassan E. A., Osman M. E. Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agriculture Sciences. 2018. Vol. 17, Iss. 3. pp. 241–249. DOI: 10.1016/j.jssas.2016.05.002.
19. Liu Q., Laskowski J. S. Adsorption of polysaccharide on minerals. Encyclopedia of surface and colloid science. 2nd ed. Ed. P. Somasundaran. New York: Taylor & Francis, 2006. Vol. 1. pp. 649–668.

Language of full-text russian
Full content Buy