Journals →  Gornyi Zhurnal →  2019 →  #5 →  Back

ArticleName Load-bearing capacity of tubular friction bolt
DOI 10.17580/gzh.2019.05.14
ArticleAuthor Zubkov A. A., Kalmykov V. N., Kutlubaev I. M., Mukhamedyarova M. S.

UralEnergoResurs, Magnitogorsk, Russia:

A. A. Zubkov, Deputy Director, Candidate of Engineering Sciences


Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:
V. N. Kalmykov, Professor, Doctor of Engineering Sciences,
I. M. Kutlubaev, Professor, Doctor of Engineering Sciences
M. S. Mukhamedyarova, Post-Graduate Student


The authors appreciate participation of Candidate of Engineering Sciences, Specialist R. V. Kulsaitov, UralEnergoResurs, in the experimental part of the studies.


The functionality of the friction-type anchor support is determined by the load-bearing capacity of the rod and the support unit interacting with the support plate. The bearing capacity of a tubular frictional bolt is determined by the nature of its interaction with the walls of the hole. The preliminary (estimated) calculation of this index is difficult because of the lack of information about the deformation condition of the rod. The proposed interaction scheme assumes coupling only over a part of the cross-sectional profile. The force factors are represented by the concentrated and distributed loads. Based on these assumptions, the mathematical model reflects the force interaction of the rod and hole. The parameters characterizing the accepted interaction scheme are determined from the solution of the obtained nonlinear equations. The physical simulation of the bolt installation in the mock-hole is performed. The accepted rod–hole interaction scheme is experimentally confirmed. The numerical simulation results agree with the experimental data. The proposed model of the tubular friction bolt operation allows calculating the bolt load-bearing capacity depending on the parameters of the rod and hole.

keywords Load-bearing capacity, tubular friction bolt, loading scheme, equilibrium equations, mockup hole, experiment, installation force, rod puller

1. Dolsak W., Glantschnegg D. Development of a rock bolt automation attachment for the installation of improved self-drilling friction bolts. Glückauf. Mining Report. 2014. No. 2(54). pp. 18–24.
2. Zubkov A. A., Zubkov A. V., Kutlubaev I. M., Latkin V. V. Improvement of friction rock bolt anchorage design and installation. Gornyi Zhurnal. 2016. No. 5. pp. 48–52. DOI: 10.17580/gzh.2016.05.05
3. Masaev Yu. A., Masaev V. Yu., Filina L. D. New developments in the field of bolting and increase of stability of rock outcrops in mines. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. No. 1. pp. 41–45.
4. Zagorodnyuk V. P. The ways to improve the steel-polymer anchor support. GIAB. 2011. No. 5. pp. 375–378.
5. Voznesenskii A. S., Voznesenskii E. A., Koryakin V. V., Krasilov M. N. The construction principles and development perspectives of the monitoring devices of the rock massif around excavations and of the mine working support. GIAB. 2015. No. 1. pp. 199–206.
6. Remezov A. V., Zharov A. I. One bolt for multiple tasks. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. No. 4. pp. 29–32.
7. Bedarev N. T., Lyubimov O. V., Sitnikov G. A., Kovalyov N. B. Strengthen monitoring of work roof bolting. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. No. 6. pp. 59–61.
8. Eligehausen R. Bemessung von Befestigungen – Zukunftiges Konzept. Betonwerk und Fertigteiltechnik. 1988. Heft 5. ss. 88–100.
9. Ozturk M. Estimation of Tensile Capacity of Single Anchors Including Edge Effect Using Neural Networks. Advanced Materials Research. 2013. Vol. 747. pp. 424–428.
10. Tkachev V. A., Prokopov A. Yu., Tolkachev V. E. Stressed and strained state of tubular anchor of frictional type. GIAB. 2010. No. 2. pp. 64–68.
11. Zubkov A. A., Zubkov A. E., Zhdanova Yu. I. Reinforced self-securing anchor support. Patent RF, No. 168801. Applied: 25.08.2016. Published: 21.02.2017. Bulletin No. 6.
12. Dolsak W. Technical Advances of Self-Drilling Rock Reinforcement and Ground Control Systems. Underground facilities for better environment and safety : Proceedings of the World Tunnel Congress 2008. Agra, 2008.
13. Zubkov A. A., Latkin V. V., Neygomonov S. S., Volkov P. V. Perspective ways of fastening of excavations on underground mines. Conditions of sustainable functioning of mineral-resource complex of Russia. Moscow : Gornaya kniga, 2014. Iss. 1. pp. 106–117.
14. Eremenko V. A., Razumov E. A., Zayatdinov D. F. Current strata bolting technologies. GIAB. 2012. No. 12. pp. 38–45.
15. Villaescusa E. Geotechnical Design for Sublevel Open Stoping. Boca Raton : CRC Press, 2014. 541 p.
16. Darling P. SME Mining Engineering Handbook. 3rd ed. Englewood : Society for Mining, Metallurgy and Exploration, 2011. 1840 p.
17. Luo J., Haycocks C., Karmis M. Overview of U.S. rock bolting. Coal International. 2001. Vol. 249, Iss. 1. pp. 30–33.
18. Mining and Ground Support. Split Set. Available at: (accessed: 20.01.2019).
19. Kopytov A. I., Voytov M. D., Tripus T. E. Calculation of tubular friction type bolt on carrying capacity. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. No. 4. pp. 8–10.
20. Voytov M. D. Tripus T. E. Development of new friction tubular bolt design. Energy safety of Russia. New approaches to the development of coal industry : XIV International Scientific–Practical Conference Proceedings. Kemerovo, 2012. pp. 55–57.
21. Kömürlü E., Kesimal A., Çolak Ü. Polyurea type thin sprayon liner coating to prevent rock bolt corrosion. Proceedings of the ISRM International Symposium – 8th Asian Rock Mechanics Symposium. Sapporo, 2014. pp. 1389–1397.
22. Kömürlü E., Kesimal A., Çolak Ü. Effect of polyurea type thin spray-on liners on rock bolt performances. Madencilik. 2015. Vol. 53. No. 3-4. pp. 13–18.
23. Charette F, Bennett A. The importance of the face plate as part of an engineered holistic ground support scheme in dynamic conditions. Proceedings of the 8th International Conference on Deep and High Stress Mining. Perth, 2017. pp. 709–722.
24. Feodosiev V. I. Strength of materials. 16th revised edition Moscow : Izdatelstvo MGTU Baumana, 2016. 543 p.

Language of full-text russian
Full content Buy