Журналы →  Gornyi Zhurnal →  2019 →  №1 →  Назад

Название Ionization radiation parameters and their spatial variation patterns in potash salt
DOI 10.17580/gzh.2019.01.16
Автор Chernyi K. A.
Информация об авторе

Perm National Research Polytechnic University, Perm, Russia:

K. A. Chernyi, Head of Chair, Doctor of Engineering Sciences, sms@pstu.ru


Use of materials based on natural potash salt is a known tool of creating high-quality, up to curative effect, room air modifiable under natural activity of sylvinite and carnallite. Facing or decoration of walls, floor or roof in special-purpose surface structures—speleoclimatic rooms—enables air saturation with light air ions. In terms of the Upper Kama Potash Salt Deposit, the main patterns in β- and γ-radiation of radioisotope 40K as the basic chemical element in composition of potash salt are analyzed. The known experimental data on ionization radiation parameters in salt mines are scrutinized and presented, and the data on background radiation in sea shore are given for the comparison. Based on the known physical constants of 40K radiation, track lengths are determined for β-particles (electrons) in potash salt and in air. Intensity of exposure doze of γ-radiation and density of β-radiation flow from natural blocks of potash salts at the Upper Kama Potash Deposit are determined. Using the averaged results, the air ionization intensity governed by 40K radiation and the maximum possible concentrations of light air ions in air medium formed under influence of potash salts are estimated. The reliability of the obtained results is proved using various approaches and empirical dependences. The obtained relations and characteristic estimates make it possible to justify efficient and radiationsafe use of building and facing materials based on potash salt as well as to soundly set requirements and optimal parameters for spatial design of sylvinite speleoclimatic rooms.

Ключевые слова Potash salt, sylvine, sylvinite, speleoclimatic room, kalium-40, beta-radiation, gammaradiation, air ionization, light air ions
Библиографический список

1. Zharin V. A., Metelskiy S. M., Reshetnikova N. V., Fedorovich S. V. Speleological: past and present. Voennaya meditsina. 2013. No. 1. pp. 48–53.

2. Enache L., Bunescu Iu. Microclimate and physical environment elements in some salt mines in Romania for speleotherapeutical use. The XIVth International Symposium of Speleotherapy : Abstracts. Cluj-Napoca : Casa Cărţii de Ştiinţă, 2012. pp. 17–18.
3. Rashleigh R., Smith S., Roberts N. A review of halotherapy for chronic obstructive pulmonary disease. International Journal of COPD. 2014. Vol. 9. pp. 239–246.
4. Levchenko P. A., Dubovik N. N., Delendik R. I. Our experience with the application of the speleotherapeutic treatment based at the state healthcare facility “Republican Speleotherapeutic Hospital”. Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kultury. 2014. Vol. 91, No. 6. pp. 26–29.
5. Levchenko P. A., Dubovik N. N., Delendik R. I. Some aspects of speleo-therapy in sylvinite–halite mines near Soligorsk in the Republic of Belarus. Astma i Allergiya. 2014. No. 3. pp. 27–29.
6. Health effects of exposure to low levels of ionizing radiation: BEIR V. Washington : National Academy Press, 1996. 436 p.
7. Krasnoshtejn A. E., Papulov L. M., Paderin Yu. N., Kovalev O. A. Climatic chamber. Patent RF, No. 2012306. Applied: 21.02.1991. Published: 15.05.94.
8. Grinchenkov D. V., Kosyachenko G. E., Mokhov V. A., Tishkevich G. I., Levchenko P. A. Analysis of development aspects of ground speleo TR eatment. Modern problems of science and education. 2015. No. 5. Available at: http://www.science-education.ru/ru/article/view?id=21743 (accessed: 10.01.2019).
9. Chereshnev V. A., Barannikov V. G., Kirichenko L. V., Varankina S. A., Khokhryakova V. P., Dementev S. V. The new directions in the physiotherapeutic applications of the natural potassium salts of the Western Ural. Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kultury. 2016. Vol. 93, No. 6. pp. 21–26.
10. Barjakh A. A., Asanov V. A., Fajnburg G. Z., Krasnoshtejn A. E., Papulov L. M., Poliksha A. M., Kovalev O. A., Selin Ju. V. Method for manufacturing of building articles having special purpose of salt materials. Patent RF, No. 2097359. Applied: 06.02.1995. Published: 27.11.1997.
11. Chernyi K. A., Fainburg G. Z. Experience in usage of sylvinite blocks and panels for «vital rooms» and main parameters of indoor air quality. Magazine of Civil Engineering. 2015. Vol. 54, No. 2. p p. 6–17.
12. Kosyac henko G. E. Sa nitary framework for integrated asse ssment of potash ore mining and efficient use of speleo-environment of potash deposit in Belarus : thesis of inauguration of Dissertation … of Doctor of Medical Sciences. Minsk, 2004. 40 p.
13. Lemko O. I., Lemko I. S. Speleotherapy, halotherapy and halo-aerosol-therapy: Definitions, influence and application prospects. Part I. Astma i allergiya. 2017. No. 3. pp. 50–63.
14. Komissarova O. V., Dorokhov E. V. Adaptive capability of speleoclimatic therapy. Ecological and Physiological Problems of Adaptation : XVII All-Russian Symposium Proceedings. Moscow : RUDN, 2017. pp. 106–107.
15. Lăzărescu H., Simionca I., Hoteteu M., Mirescu L. Speleotherapy – modern bio-medical perspectives. Journal of Medicine and Life. 2014. Vol. 7, Special Iss. 2. pp. 76–79.
16. Tan R. The Truth About Air Electricity & Health: A guide on the use of air ionization and other natural approaches for 21st century health issues. Singapure : Trafford Publishing, 2014. 168 p.
17. Enache L.-M. Observations regarding the microclimate, the carbonic gas and aeroions in the halotherapy salon (INRRMFB, Bucharest), together with some quantum considerations about action of air ions. Astma i Allergiya. 2018. No. 2. pp. 54–55.
18. Roubal Z., Bartušek K., Szabó Z., Drexler P., Überhuberová J. Measuring Light Air Ions in a Speleotherapeutic Cave. Measurement Science Review. 2017. Vol. 17, No. 1. pp. 27–36.
19. Startsev V. A., Vishnevskaya N. L., Barannikov V. N., Donskoi B. P. Radiological exploration of AB potash salt stratum. Integrated Subsoil Management and Mining Technology Improvement in the West Ural : Abstracts of Scientific Conference Hosted by the Perm Polytichnical Institute. Perm, 1983. pp. 21–22.
20. Tahir S. N. A., Alaamer A. S. Determination of natural radioactivity in rock salt and radiation doses due to its ingestion. Journal of Radiological Protection. 2008. Vol. 28, Iss. 2. pp. 233–236.
21. Baloch M. A., Qureshi A. A., Waheed A., Ali M., Ali N. et al. A study on natural radioactivity in Khewra Salt Mines, Pakistan. Journal of Radiation Research. 2012. Vol. 53, Iss. 3. pp. 411–421.
22. Chonka Y., Sichka M., Buleza B., Sharkan Y., Sakalosh I., Popovich I., Lemko I. Ionic composition of air in the underground department of Ukrainian allergic hospital. The XIVth International Symposium of Speleoterapy : Abstracts. Cluj-Napoca: Casa Cărţii de Ştiinţă, 2012. pp. 14–15.
23. Isaevich A. G., Trushkova N. A. Composition of air ions in the air of the Kungur Ice Cave. Caves : Collection of Scientific Papers. Perm : Izdatelstvo Permskogo universiteta, 2011. Iss. 34. pp. 113–116.
24. Smirnov V. V. Ionization in Troposphere. Saint-Petersburg : Gidrometeoizdat, 1992. 312 p.
25. Moiseev A. A., Ivanov V. I. Dosimetry and Health Physics Handbook. 3rd enlarged and revised edition. Moscow : Energoatomizdat, 1984. 296 p.
26. Tammet H., Kulmala M. Simulation tool for atmospheric nucleation bursts. Journal of Aerosol Science. 2005. Vol. 36, Iss. 2. pp. 173–196.
27. Shyamal Ranjan Chakraborty, Md. Kowsar Alam. Assessment of natural radioactivity in the sea beaches of Bangladesh. Radiation Protection and Environment. 2014. Vol. 37, Iss. 1. pp. 6–13.
28. Aglintsev K. K., Kodyukov V. M., Lyzov A. F., Sibintsev Yu. V. Applied Dosimetry. Moscow : Gosatomizdat, 1962. 248 p.
29. Pogosov A. Yu., Dubkovskii V. A. Ionization Radiation: Radioecology, Physics, Technologies, Protection Odessa : Nauka i tekhnika, 2012. 804 p.
30. Gusev N. G., Kimel L. R., Mashkovich V. P., Suvorov A. P. Protection from Ionization Radiation. 3rd enlarged and revised edition. Moscow : Energoatomizdat, 1989. Vol. I: Health Physics. 512 p.
31. Hirsikko A., Paatero J., Hatakka J., Kulmala M. The 222Rn activity concentration, external radiation dose and air ion production rates in a boreal forest in Finland between March 2000 and June 2006. Boreal Environment Research. 2007. Vol. 12, No. 3. pp. 265–278.
32. Papulov L. M., Poliksha A. M., Fainburg G. Z., Nikolaev A. S. Patent RF, No. 2045964. Applied: 18.05.1992. Published: 20.10.95.
33. RF Public Health Regulations SanPiN–03. Hygenic rating of air ion content in production premises and public rooms. Available at: http://docs.cntd.ru/document/901860667 (accessed: 10.01.2019).

Language of full-text русский
Полный текст статьи Получить