Журналы →  Gornyi Zhurnal →  2019 →  №1 →  Назад

POWER SYSTEM MANAGEMENT, AUTOMATION
Название Automatic control system for wet magnetic separation of iron ore
DOI 10.17580/gzh.2019.01.13
Автор Osipova N. V.
Информация об авторе

NUST MISIS, Moscow, Russia:

N. V. Osipova, Associate Professor, Candidate of Engineering Sciences, nvo86@mail.ru

Реферат

The article focuses on finding solution to a topical scientific–technical problem—automation of wet magnetic separation control in iron ore processing. The automatic control allows stabilization of iron content of concentrate at a preset level at the minimum loss in tailings. The author reviews briefly the publications devoted to this topic, marks advantages and disadvantages of the earlier developed methods and offers a new approach based on using two subsystems ensuring stabilization of magnetic iron content of concentrate and iron loss in tailings. The input parameters of these subsystems are the separator drum rotation speed and the water flow rate in separating bath. Based on the time charts obtained in modeling the automatic control of magnetic separation of iron ore, some conclusions can be drawn. The application of the proportionally integral law of control makes it possible to stabilize useful component content at a preset level in concentrate at override not more than 0. 55 % under trouble of equipment operation due to unstable properties of pulp slurry. The positioning controller of iron content of tailings ensures stabilization of this parameter at a level not higher than permissible value at override not more than 0.2 %. The research of the developed model efficiency allows recommending it for the commercial introduction at processing plants of operating mining and processing works.

Ключевые слова Iron ore, magnetic separation, concentrate, tailings, asynchronous drive, stator, rotor, P-controller, valve, controller, SCADA system
Библиографический список

1. Tsymbal V. P. , Pavlov V. V., Sechenov P. A., Olennikov A. A. Simulation modeling of interaction of dispersed particles in the jet-emulsion unit and gravitational separation. Chernye Metally. 2016. No. 6. pp. 55–60.
2. Sahoo H., Rath S. S., Rao D. S., Mishra B. K., Das B. Role of silica and alumina content in the flotation of iron ores. International Journal of Mineral Processing. 2016. Vol. 148. pp. 83–91.
3. Lu L. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Cambridge : Woodhead Publishing, 2015. 631 p.
4. Wills B. A., Finch J. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 8th edition. Oxford : Butterworth-Heinemann, 2015. 512 p.
5. Zhou X., Zhu D., Pan J., Luo Y., Liu X. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process. Metals. 2016. Vol. 6, Iss. 3. pp. 1–12.
6. Ignatov V. N., Borisova E. I., Titov A. N. Mineral Processing : Instructional Guidelines on Practice and Self-Training of Students. Novocherkassk : YuRGPU (NPI), 2017. 28 p.
7. Kuskov V. B., Lvov V. V. Magnetic, Electrical and Special Methods of Processing: Instructional Guidelines on Course Design. Saint-Petersburg, 2016. 70 p.
8. Osipova N. V., Samoylova V. T. Review of the methods of process optimization and control of magnetic separation of iron ore. GIAB. 2017. No. 8. pp. 126–130.
9. Bogdanov O. S., Nenarokomov Yu. F. (Eds.). Ore Processing Handbook. Processing Plants. Moscow : Nedra, 1984. Vol. 4. 360 p.
10. S7-300 Automation System. Data of Modules: Reference Guide. 2006. Available at: http://www.ste.ru/siemens/pdf/rus/S7_300_Modul_Data_p1_r.pdf (accessed: 29.04.2018).
11. Detector–Analyzer of Ore Content of Iron Ore Pulp. Available at: http://www.analyzator.su/detector_rudonosnosti_pulpy.php (accessed: 22.10.2017).
12. German-Galkin S. G. Matlab & Simulink: Computer Design of Mechatronic Systems. Saint-Petersburg : KORONA-Vek, 2008. 368 p.
13. Osipova N. V. Model of Stabilization of the Quality of Iron-Ore Concentrate in the Process of Magnetic Separation with the Use of Extreme Regulation. Metallurgist. 2018. Vol. 62, Iss. 3-4. pp. 303–309.
14. Eliseev V. L. Modeling Control Systems : Course of Lectures. Moscow : NIU MEI, 2016. 133 p.
15. Pevzner L. D. Theory of Control Systems. 2nd enlarged and revised edition. Moscow : Lan, 2013. 424 p.
16. Polyakov K. Yu. Basic Theory of Automatic Control : Educational Aid. Saint-Petersburg : SPbGMTU, 2016. 234 p.
17. Shcherbakov V. S., Lazuta I. V. Theory of Automatic Control. Linear Continuous Systems : Educational Aid. Omsk : SibADI, 2013. 142 p.
18. Osipova N. V. The use of Kalman filter in automatic control of indicators of iron ores magnetic concentration. Izvestiya vuzov. Chernaya Metallurgia. 2018. Vol. 61, Iss. 5. pp. 372–377.

Language of full-text русский
Полный текст статьи Получить
Назад