Журналы →  CIS Iron and Steel Review →  2018 →  №2 →  Назад

Metal Science and Metallography
Название Evolution of cementite in pearlite carbon steel wire at combined deformational processing
DOI 10.17580/cisisr.2018.02.08
Автор M. A. Polyakova, K. Narasimhan, M. J. N. V. Prasad, Yu. Yu. Efimova
Информация об авторе

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

M. A. Polyakova, Dr. Eng., Prof., Dept. of Material Processing, e-mail: m.polyakova@magtu.ru
Yu. Yu. Efimova, Cand. Eng., Associate Prof., Dept. of Material Processing, e-mail: yu.efimova@magtu.ru

 

Indian Institute of Technology Bombay (Mumbai, India):

K. Narasimhan, Dr. Eng. Department of Metallurgical Engineering and Materials Science, e-mail: nara@iitb.ac.in
M. J. N. V. Prasad, Dr. Eng. Department of Metallurgical Engineering and Materials Science

Реферат

Implementation of combined methods of deformational processing is on the cutting-edge of downstream steel manufacturing. The effect of plastic deformation on metals is the irreversible particular changes in microstructure. To develop new technological processes of metal ware manufacturing it is necessary to study the microstructure changing features in steel in order to predict its properties. Carbon steel wire with pearlite structure is used for a wide range of engineering components. Carbon steel wire was plastically deformed by drawing in combination with bending and torsion. Such combination resulted in characteristic changing of cementite plates. The main objective of the paper is to correlate cementite evolution of carbon steel wire after combined deformational processing by drawing with bending and torsion with its mechanical properties. The construction of the used laboratory setup consisted of two drawing dies and four-rolls system which makes it possible to change the deformation degree during drawing, bending by the use of rolls with different diameters as well as torsion deformation in wide range. Scanning electron microscopy and tensile test were used for analysis of processed carbon steel wire. It was observed that after combined deformational processing cementite lamellas were destroyed. After combination of drawing with bending, cementite lamellas became curve especially when in the four-rolls system the rolls with smaller diameter were installed. By the combination of drawing with bending and torsion, the cementite lamellas changed in the same manner as without torsion deformation, but boundaries between pearlite colonies could not be identified with smaller diameter of rolls. Because combined deformation schemes during combination of different kinds of deformation was rather complicated, they had different impact on strength and ductile properties of the processed pearlitic wire.

Authors appreciate PhD Alexandr Gulin (Nosov Magnitogorsk state technical university) for conducting tensile tests of the processed carbon steel wire and interpreting the experimental results.

The reported study was funded by RFBR according to the research project №18-58-45008 IND_a.

Ключевые слова Carbon steel wire; cementite; pearlite; combined deformational processing; drawing; bending; torsion
Библиографический список

1. Krauss G. Steels: Processing, Structure, and Performance; 2nd ed.; Publisher: ASM International, USA, 2005; pp. 281–295.
2. Plaut R. L.; Padiha A. F.; Lima N. B.; Herrera C.; Filho A. F.; Yoshimura L. H. Medium carbon steel deep drawing: A study on the evolution of mechanical properties, texture and simulations, from cold rolling to the end product. Mater. Sci. and Eng.: A. 2009. 499. pp. 337–341. DOI: 10.1016/j.msea.2007.11.131.
3. Lutsenko V. A.; Levchenko G. V.; Lutsenko O. V.; Baradyntseva E. P.; Seregina E. S. Influence of wire rod structure, subjected to thermomechanical treatment, on qualitative parametetrs of high-strength bead wire. Chernye metally. 2013. No. 10. pp. 52–56.
4. Fetisov V. P.; Birukov, B.A. Influence of the lay technology via double twisting on forming residual twistings and straightness of steel wire cord. Chernye metally. 2012. No. 10. pp. 44–47.
5. Kumar P.; Gurao N. P.; Haldar A.; Suwas S. Progressive changes in the microstructure and texture in pearlitic steel during wire drawing. The Iron and Steel Institute of Japan Int. 2011. Vol. 51. pp. 679–684. DOI: 10.2355/isijinternational.51.679.
6. Huang H.; Wang L.; Li F. Structure evolution in steel wires during drawing. Adv. Mater. Res. 2011. pp. 194–196, 218–223, DOI: 10.4028/www.scientific.net/AMR.194–196.218.
7. Takahshi T.; Nagumo M.; Asano Y. Microstructure dominating the ductility of eutectoid pearlitic steels. Journal of the Japan Institute of Metals. 1978. Vol. 42. pp. 708–715. DOI: 10.2320/jinstmet1952.42.7-708.
8. Daiton Y.; Hamada. T. Microstructures of heavily-deformed high carbon steel wires. Tetsu-to-Hagane 2000. Vol. 86. pp. 105–110. DOI: 10.2355/tetsutohagane1955.86.2_105.
9. Zheng C.; Li L.; Yang W.; Sun Z. Enhancement of mechanical properties by changing microstructure in the eutectoid steel. Mater. Sci. and Eng.: A. 2012. Vol. 558. pp. 158–161. DOI: 10.1016/j.msea.2012.07.105.
10. Fang F.; Hu X.-J.; Zhang B.-M.; Xie Z.-H.; Jiang J.-Q. Deformation of dual-structure medium carbon steel in cold drawing. Mater. Sci. and Eng.: A. 2013. Vol. 583. pp. 78–83. DOI: 10.1016/j.msea.2013.06.081.
11. Zidani M.; Messaoudi S.; Baudin T.; Solas D.; Mathon M. H. Deformation textures in wire drawn pearlitic steel. Int. J. Mater. Forum. 2010. Vol. 3. pp. 7–11. DOI: 10.1007/s12289-009-0410-3.
12. Mihalikova M.; Lackova P.; Liskova A. Analysis of pearlitic cold drawn steel wire. Mater. Sci. Forum. 2015. Vol. 818. pp. 288–291. DOI: 10.4028/www.scientific.net/MSF.818.288.
13. Zhao T.-Z.; Zhang G.-L.; Song H.-W.; Cheng M.; Zhang S. H. Crystallographic texture difference between center and subsurface of thin cold-drawn pearlitic steel wires. J. Mater. Eng. and Perf. 2014. Vol. 23. pp. 3279–3284.
14. Potecasu O.; Potecasu F.; Marin M.; Marin F. B.; Chicos F. The influence of the deformation degree on the mechanical properties and microstructures of the blanks obtained by tube and wire drawing. Adv. Mater. Res. 2017. Vol. 1143. pp. 85–90. DOI: 10.4028/www.scientific.net/AMR.1143.85.
15. Hono K.; Ohnuma M.; Murayama M.; Takahashi T. Cementite decomposition in heavily drawn pearlite steel wire. Scr. Mater. 2001. Vol. 44. pp. 977–983. DOI: 10.1016/S1359-6462(00)00690-4.
16. Gavriljuk I. V. Comment on “Cementite decomposition in heavily drawn pearlite steel wire”. Scr. Mater. 2002. Vol. 46. pp. 175–177. DOI: 10.1016/S1359-6462(01)01192-7.
17. Todaka Y.; Umemoto M.; Tsuchiya K. Microstructural change of cementite in carbon steels by deformation. Mater. Sci. Forum. 2004. pp. 449–452, 525–528. DOI: 10.4028/www.scientific.net/MSF.449-452.525.
18. Xiong Y.; He T. T.; Zhang F. Y.; Zhang L. F.; Ren F. Zh. Microstructure evolution of pearlitic lamella impacts at ultrahigh strain rates. Key Eng. Mater. 2011. Vol. 464. pp. 619–622. DOI: 10.4028/www.scientific.net/KEM.464.619.
19. Daitoh Y.; Sano N.; Hamada T.; Ta kaki S. Microstructural changes of cementite and ferrite in heavily drawn pearlitic wires. Mater. Sci. Forum. 2003. Vol. 426-432. 1231-1236, DOI: 10.4028/www.scientific.net/MSF.426-432.1231.
20. Shiota Y.; Tomota K. Y.; Takashi K. Dissolution of cementite plates by drawing, recipitation with annealing and corresponding changes in tensile behaviour in a pearlite steel. Solid State Phen. 2006. Vol. 118. pp. 27–30. DOI: 10.4028/www.scientific.net/SSP.118.27
21. Tarui T.; Maruyama N.; Tashiro H. Cementite decomposition in high carbon steel wires. Tetsu-to-Hagane. 2005. Vol. 91. pp. 265–271. DOI: 10.2355/tetsutohagane1955.91.2_265.
22. Sun S. H.; Xiong Yi; Fu W.-T.; Xing G. Z.; Furuhara T.; Maki T. Microstructure changes of eutectoid pearlitic steel during cold rolling. Acta Metallurg. Sin. — Chinese Edition. 2005. Vol. 41.
23. Kapp M. W.; Hohenwarter A.; Wurster S.; Yang B.; Pippan R. Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel. Acta Mater. 2016. Vol. 106. pp. 239–248. DOI: 10.1016/j.actamat.2015.12.037.
24. Zhang X.; Godfrey A.; Hansen N.; Huang X. Hierarchical structures in cold-drawn pearlitic steel wire. Acta Mater. 2013. Vol. 61. pp. 4898–4909.
25. Nam W. J.; Bae Ch. M.; Oh S. J.; Kwon, S.-J. Effect of interlamellae spacing on cementite dissolution during wire drawing of pearlitic steel wires. Scr. Mater. 2000. Vol. 42. DOI: 10.1016/S1359-6462(99)00372-3.
26. Baranov A. A.; Bunin K. P.; Dorokhin L. M.; Movchan, V. I. Change in the shape of cementite during deformation of steel. Met. Sci. and Heat Treat. 1973. Vol. 15. pp. 797–798. DOI: 10.1007/BF00656297.
27. Takahashi J. Atom probe study on microstructure change in severely deformed pearlitic steels: application to rail surfaces and drawn wires. IOP Conf. Series: Mater. Sci. and Eng. 2017. Vol. 219. pp. 1–17, DOI: 10.1088/1757-899X/219/1/012007.
28. Muskalski Z.; Milenin A. Development of finite element model of reorientation of cementite lamellae in pearlite colonies in wire drawing process for wires made from high carbon steel. Solid State Phen. 2010. Vol. 165. pp. 136-141.DOI: 10.4028/www.scientific.net/SSP.165.136.
29. Guo N.; Luan B. F.; Wang B. S.; Liu Q. Microstructure and texture evolution in fully pearlitic steel during wire drawing. Science China. Techn. Sci. 2013. DOI: 10.1007/s11431-013-5184-7.

30. Dovzhenko N. N.; Sidelnikov S. B. Innovative technologies of metal forming based on combination processes of casting, extruding and rolling. Zhurnal Sibirskogo Federalnogo universiteta. Tekhnika i tekhnologiya. 2015. No. 1. pp. 57–60.
31. Luzgin V. P. Ways of making steelmaking processes less material-and energy-intensive. Metallurgist. 2000. Vol. 44. pp. 510–514. DOI: 10.1023/A:1004849230730.
32. Skopov G. V.; Matveev A. V. Combined processing of polymetallic semifinished products of metallurgical production. Metallurgist. 2011. Vol. 55. pp. 596–600. DOI: 10.1007/s11015-011-9473-8.
33. Pesin A.; Pustovoitov D.; Pesin I.; Drigun E. Technology development of large-size bodies manufacturing from thick plate materials based on combined methods of deformation. Key Eng. Mater. 2016. Vol. 685. pp. 375–379. DOI: 10.4028/www.scientific.net/KEM.685.375.
34. Muszka K.; Wielgus M.; Majta J.; Doniec K.; Stefanska-Kadziela M. Influence of strain path changes on microstructure inhomogeneity and mechanical behaviour of wire drawing products. Mater. Sci. Forum. 2010. Vol. 654-656. pp. 314–317. DOI: 10.4028/www.scientific.net/MSF.654-656.314.
35. Ko Y. G.; Namgung S.; Shin D. H.; Son I. H.; Rhee K. H.; Lee D.-L. Spheriodization of medium carbon steel fabricated by continuous shear drawing. J. Mater. Sci. 2010. Vol. 45. pp. 4866–4870. DOI: 10.1007/s10853-010-4587-0.
36. Polyakova M.; Gulin A.; Nikitenko O.; Konstantinov D.; Zherebtsov M. Ultrafine-grain structure and properties of carbon-steel wire after complex deformation. Steel in Translation. 2014 Vol. 44. pp. 390–393. DOI: 10.3103/S0967091214050106.
37. Chukin M.; Polyakova M.; Gulin A. Influence of hybrid plastic deformation on the microstructure and mechanical properties of carbon-steel wire. Steel in Translation. 2016, Vol. 46. pp. 548–551. DOI: 10.3103/S0967091216080076.
38. Polyakova M. A.; Calliari I.; Pivovarova K. G.; Gulin A. E. Approach to obtaining medium carbon steel wire with a specified set of mechanical properties after combined deformational processing. Materials Physics and Mechanics. 2018. Vol. 36. pp. 53–59. DOI: 10.18720/MPM.3612018_5

Language of full-text английский
Полный текст статьи Получить
Назад