Journals →  Chernye Metally →  2018 →  #2 →  Back

Steelmaking
ArticleName Process Modelling and Simulation of an EAF and its Dedusting System
ArticleAuthor Th. Meier, A. H. Kolagar, Th. Echterhof, H. Pfeifer
ArticleAuthorData

RWTH Aachen University (Aachen, Germany):

Th. Meier, Scientific researcher
A. H. Kolagar, Scientific researcher
Th. Echterhof, Dr. Eng., Academ. advisor, e-mail: echterhof@iob.rwth-aachen.de
H. Pfeifer, Dr. Eng., Prof., Director of the Institute of Industrial Furnaces Construction and Thermal Processes

Abstract

Further developments and model enhancements of the described EAF process simulation model and the calculation model of the dedusting system are described within this paper. In particular, the EAF model is improved with a more detailed gas phase simulation, leading to more accurate off gas predictions for further calculations in the dedusting system model. In addition, thermal radiation of the gas phase is included in the total heat transfer module as a consequence of the temperature levels of the gas phase in combination with the present CO, H2O and CH4 levels. The simulation results of the EAF gas phase are well corresponding to the measured off-gas data from the EAF. With some further developments on the gas phase temperature simulation, the model will be capable to reproduce the measured off-gas composition and energy output through the off-gas for single heats with slight parameter adaptions. Here, the results of the two calculation cases show the effect of a nearly controlled false air intake for post-combustion in the dedusting system in contrast to an excessive false air intake. In the future it is intended, to predict the potential of a waste heat recovery installation to support decision processes if a steam generation is taken into consideration for process optimization. In addition, the results of the two calculation cases show the effect of a nearly controlled false air intake for post-combustion in the dedusting system in contrast to an excessive false air intake.

keywords Electric arc furnace, dynamic model, waste gases, gas removal system, simulation, heat conductivity, temperature
References

1. Zuliani, D. J.; Scipol, V.; Born, C.: Millenium Steel, Millennium Steel Publishing, London, UK, 2010, pp. 54/61.
2. Bekker, J. G.; Craig, I. K.; Pistorius, P. C.: ISIJ Int. 1. 1999. pp. 23/32.
3. Fernandez, J. M. M.; Cabal, V. A.; Montequin, V. R.; Balsera, J. V.: Eng. Appl. Artif. Intel. 2008. No. 7. pp. 1001/12.
4. Logar, V.; Dovžan, D.; Škrjanc, I.: ISIJ Int. 52. 2012. No. 3. pp. 402/412.
5. Logar, V.; Dovžan, D.; Škrjanc, I.: ISIJ Int. 52. 2012. No. 3. pp. 413/23.
6. Macrosty, R. D. M.; Swartz, C. L. E.: Ind. Eng. Chem. Res. 21. 2005. pp. 8067/83.
7. Kolagar, A. H.; Meier, T.; Echterhof, T.; Pfeifer, H.: Int. J. Eng. Syst. Modell. Simul. 7. 2015. No. 4, pp. 244/55.
8. Meier, T.; Logar, V.; Echterhof, T.; Škrjanc, I.; Pfeifer, H.: Steel res. int. 87. 2015. No. 5, pp. 581/88.
9. Kee, R. J.; Coltrin, M. E.; Glarborg, P.: Chemically reacting flow: theory and practice, Wiley, Hoboken, New Jersey, USA, 2005.
10. Howell, J. R.; Siegel R.; Menguc, M. P.: Thermal radiation heat transfer, CRC Press, Boca Raton, USA, 2011.
11. Kirschen, M.; Velikorodov, V.; Pfeifer, H.: Energy 31. 2006. No. 14, pp. 2926/39.
12. Velikorodov, V.: Der Einfluss der Entstaubung auf den spezifischen elektrischen Energieeinsatz des Lichtbogenofens, RWTH Aachen, 2009 (Diss.).
13. Hofer, M.: Instationäre, nichtlineare Modellierung und Simulation gasdurchströmter Apparate in Abgasbehandlungsanlagen von Elektrostahlwerken, Techn. Univ. Wien, Österreich, 1997 (Diss.).
14. VDI e.V.: VDI-Wärmeatlas, Springer, Berlin, 2006.
15. Gandt, K.; Meier, Т.; Echterhof, Т.; Pfeifer, H.: Ironmak. Steelmak. 43. 2016. No. 8, pp. 581/87.

Language of full-text russian
Full content Buy
Back