Журналы →  CIS Iron and Steel Review →  2017 →  №2 →  Назад

Metal Science and Metallography
Название Investigation of microstructure of high-manganese steel, modified by ultra-dispersed powders, on the base of compounds of refractory metals
DOI 10.17580/cisisr.2017.02.07
Автор K. N. Vdovin, N. A. Feoktistov, D. A. Gorlenko, O. A. Nikitenko
Информация об авторе

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

K. N. Vdovin, Dr. Eng., Prof., Head of the Chair of Metallurgy and Casting Processes, kn.vdovin@gmail.com
N. A. Feoktistov, Cand. Eng., Acting Associate Prof., Chair of Metallurgy and Casting Processes,
D. A. Gorlenko, Cand. Eng., Assistant of Dept. of Foundry and Materials, gorldima@yandex.ru
O. A. Nikitenko, Cand. Eng., Senior Lecturer, Chair of Material Science and Heat Treatment


The paper presents the results of investigation of micro structural parameters of cast and quenched high-manganese steel depending on the amount of introduced titanium oxycarbonitride as well as on cast steel cooling rate. The main part of the work contains the experimental data in the effect of modification on average size and microhardness of austenite grain, on amount, average size and density of distribution of the excessive phase as well as its qualitative chemical composition. Generalization of the obtained experimental data allowed to reveal regularities of structure forming for high-manganese steel modified by titanium oxycarbonitride. The final part of the paper includes formulated conclusions as well as recommendations on the most rational amount of introducing modifier.

The study was financially supported by the grant of Russian Scientific Fund (the project No. 15-19-10020).

Ключевые слова High-manganese steel, modification, titanium oxycarbonitride, cooling rate, crystal growth
Библиографический список

1. Bouaziz O., Allain S., Scott C. P., et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science. 2011. Vol. 15(4). pp. 141–168.
2. Yan Weilin, Fang Liang, Sun Kun et al. Thermodynamics of nanocrystilline formation in surface layer of Hadfield steel by shot peening. Materials Science and Engineering A. 2007. 445–446 (6). pp. 392–397.
3. Canadinc D., Sehitoglu H., Maier H. J. The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals. Materials Science and Engineering A. 2007. 454–455(16). pp. 662–666.
4. Zhang F. C., Yang Z. N., Qian L. H. et al. High speed pounding: A novel technique for the preparation of a thick surface layer with a hardness gradient distribution on Hadfield steel. Scripta Materialia. 2011. Vol. 64 (6). pp. 560–563.
5. Wen Y. H., Peng H. B., Si H. T. et al. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials and Design. 2014. Vol. 55 (6). pp. 798–804.
6. Abbasi Majid, Kheirandish Shahram, Kharrazi Yosef et al. The fracture and plastic deformation of aluminum alloyed Hadfield steels. Materials Science and Engineering A. 2009. 513–514 (11). pp. 72–76.
7. Radis R., Schlacher C., Kozeschnik E. et al. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel. Metallurgical and Materials Transactions A. 2012. Vol. 43 (4). pp. 1132–1139.
8. Xiong Renlong, Peng Huabei, Si Haitao et al. Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels. Materials Science and Engineering A. 2014. Vol. 598. pp. 376–386.
9. Karaman I., Sehitoglu H., Chumlyakov Y. I. et al. Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Materialia. 2001. Vol. 44 (2). pp. 337–343.
10. Astafurova E. G., Tukeeva M. S., Zakharova G. G. et al. The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel. Materials Characterization. 2011. Vol. 62 (6). pp. 588–592.
11. Efstathiou C., Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Materialia. 2010. Vol. 58 (5). pp. 1479–1488.

12. Yan Weilin, Fang Liang, Zheng Zhanguang et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribology International. 2009. Vol. 42 (5). pp. 634–641.
13. Yan Weilin, Fang Liang, Sun Kun et al. Effect of surface work hardening on wear behavior of Hadfield steel. Materials Science and Engineering A. 2007. 460–461 (4). pp. 542–549.
14. Kolokoltsev V. M., Vdovin K. N., Gorlenko D. A. et al. Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates. CIS Iron and Steel Review. 2016. Vol. 11. pp. 35–40.
15. Ali Nasajpour, Amir Hossein Kokabi, Parviz Davami et al. Effect of molybdenum on mechanical and abrasive wear properties of coating of as-weld Hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds. 2016. Vol. 659. pp. 262–269.
16. Jiang Qichuan, He Zhenming, Cui Donghuan et al. Abrasionresistant as-cast manganese steel with nodular carbide modified by calcium. Journal of Materials Science Letters. 1990. Vol. 9 (5). pp. 616–617.
17. Zuidema B. K., Subramanyam D. K., Leslie W. C. The Effect of Aluminum on the Work Hardening and Wear Resistance of Hadfield Manganese Steel. Metallurgical and Materials Transactions A. 1987. Vol. 18 (9). pp. 1629–1639.
18. Dastur Y. N., Leslie W. C. Mechanism of Work Hardening in Hadfield Manganese Steel. Metallurgical Transactions A. 1981. Vol. 12 (5). pp. 749–759.
19. Vdovin K. N., Gorlenko D. A., Feoktistov N. A. Characteristics of excess phase in cast high-manganese steel. Steel in Translation. 2016. Vol. 46 (7). pp. 484–488.
20. Vdovin K. N., Feoktistov N. A., Gorlenko D. A. The effect of the cast high-manganese steel primary structure on its properties. Materials Science Forum. 2016. 870. pp. 339–344.
21. Idrissi H., Renard K., Ryelandt L. et al. On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Materialia. 2010. Vol. 58 (7). pp. 2464–2476.
22. Gorlenko D. A., Vdovin K. N., Feoktistov N. A. Mechanisms of cast structure and stressed state formation in Hadfield steel. China Foundry. 2016. Vol. 13 (6). pp. 433–442.
23. Owen W. S., Grujicic M. Strain aging of austenitic Hadfield manganese steel. Acta Materialia. 1998. Vol. (47) 1. pp. 111–126.

Language of full-text английский
Полный текст статьи Получить