Журналы →  Obogashchenie Rud →  2017 →  №6 →  Назад

BENEFICIATION TECHNOLOGY
Название The Amderminskoye deposit fluorite ores gravity concentration
DOI 10.17580/or.2017.06.04
Автор Kuskov V. B., Kuskova Ya. V.
Информация об авторе

St. Petersburg Mining University (St. Petersburg, Russia):

Kuskov V. B., Associate Professor, Candidate of Engineering Sciences, opikvb@mail.ru
Kuskova Ya. V., Assistant, Candidate of Engineering Sciences, yana.kuskova@gmail.com

Реферат

The results of the fluorite ores gravity concentration studies are described in the paper. Fluorite concentrates used in chemical and especially optical industries must comply with very stringent requirements, therefore, the costs of these concentrates are also very high. Dressability of two samples was studied: fluorite-quartz-carbonate (sample 1) and fluorite-quartz-carbonate-sulfide (sample 2). The densimetric analysis of these samples, ground to different sizes, was performed. Sample 1 material concentration was studied with respect to different size fractions in heavy-liquid hydrocyclone and in heavy-density medium, and sample 2 material — in heavy-liquid hydrocyclone. Two-stage concentration flow sheet was used for concentration of sample 2 material. Materials of both samples were also concentrated on concentrating table. Heavy-media separation and concentration on concentrating table permitted to obtain highgrade concentrates (at least 98 % CaF2).
The work was performed with the financial support from the Ministry of Education and Science of the Russian Federation through the Federal Targeted Programme «Research and development in the trends of priority growth areas of the science and technology sector of the Russian Federation for 2014–2020», Project RFMEFI57417X0168.

Ключевые слова Fluorite ores, optical fluorite, gravity concentration, heavy-media separation, heavy-liquid hydrocyclone, concentration on tables
Библиографический список

1. Yushkin N. P., Volkova N. V., Markova G. A. Optical fluorite. Moscow: Nauka, 1983. 134 p.
2. Yushkin N. P., Romashkin Yu. N., Markova G. A. The Urals-Novaya Zemlya fluorite province. Leningrad: Nauka, 1982. 220 p.
3. Fatyanov A. V., Nikitina L. G., Glotova E. V. Technology of fluorite ores beneficiation. Novosibirsk: Nauka, 2006. 195 p.
4. Mokrousov V. A., Lileev V. A. Radiometric beneficiation of non-radioactive ores. Moscow: Nedra, 1979. 192 p.
5. Marchenko A. A., Zashikhin A. V., Voskresenskaya E. N., Yuzhannikov A. Yu. Development of fluorite ore processing technology for the Nizhne-Berezovsky deposit (Krasnoyarsk’ region). Uspekhi Sovremennogo Estestvoznaniya. 2016. No. 12. pp. 20–25.
6. Handbook on the ores beneficiation. Concentrating plants. Moscow: Nedra, 1984. 358 p.
7. Handbook on the ores beneficiation. Basic processes. Moscow: Nedra, 1983. 381 p.
8. Burt R. O. Gravity concentration tekhnology. Moscow: Nedra, 1990. 575 p.
9. Verkhoturov M. V. Gravitational methods of beneficiation: A textbook for universities. Moscow: MAKS Press, 2006. 352 p.
10. Kizevalter B. V. Theoretical basis of gravity beneficiation processes. Moscow: Nedra, 1979. 295 p.
11. Falconer A. Gravity separation: Old technique/new methods. Physical Separation in Science and Engineering. 2003. Vol. 12, No. 1. pp. 31–48.
12. Povarov A. I. Hydrocyclone at the concentrator. Moscow: Nedra, 1976. 199 p.
13. Lopatin A. G. Centrifugal beneficiation of ores and sands. Moscow: Nedra, 1987. 224 p.
14. Burt R. O., Korinec G., Young S. R., Deveau C. Ultrafine tantalum recovery strategies. Mineral Engineering. 1995. Vol. 8, No. 8. pp. 859–870.
15. Bogdanovich A. V., Fedotov K. V. The main tendencies of development of equipment and technology for gravitational concentration of sands and fine-impregnated ores. Gornyi Zhurnal. 2007. No. 2. pp. 51–57.
16. Bogdanovich A. V., Vasilyev A. M. Study of operation of gravity separators designed to concentrate fine-grained materials. Obogashchenie Rud. 2005. No. 1. pp. 12–15.
17. Kruk M. N., Semenov A. S. Project risk analysis and management decision-making in determining the parameters of ore quarries. Journal of Industrial Pollution Control. 2017. Vol. 33, No. 1. pp. 1024–1028.
18. Isaev I. N. Concentration tables. Moscow: Gosudarstvennoe nauchno-tekhnicheskoe izdatelstvo literatury po gornomu delu, 1962. 100 p.
19. Vaisberg L. А., Demidov I. V., Ivanov K. S. Mechanics of granular media under vibration action: the methods of description and mathematical modeling. Obogashchenie Rud. 2015. No. 4. pp. 21–29. DOI: 10.17580/or.2015.04.05.
20. Fitzpatrick R. S., Ghorbani Y., Hegarty P., Rollinson G. Quatitative mineralogy for improved modeling of shaking tables. XXVIII IMPC. Quebec City, Canada, 2016. Paper No. 1159. p. 1–19.
21. Bergmann C., Govender V., Corfield A. A. Using mineralogical characterisation and process modelling to simulate the gravity recovery of ferrochrome fines. Minerals Engineering, Physical Separation. 2016. Vol. 91. pp. 2–15. DOI: 10.1016/j.mineng.2016.03.020.
22. Vasilyev А. М., Kuskov V. B. Regularities of finegrained materials separation process on concentrating table. Obogashchenie Rud. 2017. No. 3. pp. 63–68. DOI: 10.17580/or.2017.03.10.
23. Vaisberg L. А., Kuskova Ya. V. Improvement of circular concentrating tables as development of gravity concentration methods. Obogashchenie Rud. 2017. No. 4. pp. 54–60. DOI: 10.17580/or.2017.04.10.

Language of full-text русский
Полный текст статьи Получить
Назад