Журналы →  Gornyi Zhurnal →  2017 →  №10 →  Назад

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
Название Controllable magnetic anomalies in mineral processing technologies
DOI 10.17580/gzh.2017.10.06
Автор Vaisberg L. A., Dmitriev S. V., Mezenin A. O.
Информация об авторе

Mekhanobr-Tekhnika Research & Engineering Corporation, Saint-Petersburg, Russia:

L. A. Vaisberg, Research Manager, Academician of the Russian Academy of Sciences
S. V. Dmitriev, Chief Specialist, dmitriev_sv@npk-mt.spb.ru
A. O. Mezenin, Chief Specialist, Candidate of Engineering Sciences

Реферат

The know-how on creation of magnetic anomalies (artificial magnetic fields with the preset values of induction and its gradient), their control and application for separation of materials in different physical states based on magnetic properties is relatively new. This article addresses the use of magnetic anomalies in the mining industry. The current industry practices many of such technologies. The scientific progress continuously opens up new possibilities for the magnetic anomalies although their current level of application in the technosphere and in the human life activity is comparatively comprehensively studied. For different application areas and problem solution, many separating facilities are designed: from highcapacity iron separators to removers of fine ferruginous admixtures of kaoline and quartz sand. There exists equipment for dry and wet separation with water used as a disperse medium, which is required in processing of finely milled ore and other materials. The magnetic field source can both be electromagnets and permanent magnets made of hard-magnetic materials. Aside from magnetic separation (magnetic field) in mineral processing, magnetic materials enjoy wide application in the other areas. For example, magnetic separation is increasingly used in cytology. The principle of application of magnetic anomalies for separation remains the same despite another microobject of separation – a cell as a living body unit. Based on the aforesaid, magnetic materials being intrinsically artificial magnetic anomalies as well as their derivatives are widely and efficiently used in industrial technologies and, recently, in maintenance of quality of life and health.
This study has been supported by the Russian Science Foundation, Project No. 17-79-30056).

Ключевые слова Ore concentration, magnetic anomalies, magnetic separation, magnetic materials, pseudoliquefaction
Библиографический список

1. Guba S., Horváth B., Szalai I. Determination of the force acting on biocompatible ferrofluid droplets in inhomogeneous magnetic field. Journal of Magnetism and Magnetic Materials. 2017. Vol. 444. pp. 173–177.
2. Chen Luzhend, Zend Jianwn, Guan Changping, Zhang Huifen, Ruoyu Yang. High gradient magnetic separation in centrifugal field. Minerals Engineering. 2015. Vol. 78. pp. 122–127.
3. Rafi zadeh A., Askari M., Qaredaqi M., Rostami S. Application of different wet high intensity magnetic separations in Gole-Gohar mine. Proceedings of the XXVII International Mineral Processing Congress – IMPC 2014. Santiago, 2014. Vol. 18. Magnetic Separation and Urban Mining.
4. Haghi H., Noaparast M. Iron removal from relatively low grade silica using magnetic separation. Proceedings of the XXVII International Mineral Processing Congress – IMPC 2014. Santiago, 2014. Vol. 18. Magnetic Separation and Urban Mining.
5. Ore dressing reference book : in 4 volumes. Ed.: O. S. Bogdanov. Second edition, revised and enlarged. Moscow : Nedra, 1983. Vol. 2. Basic processes. 381 p.
6. Ore preparation, increasing of quality of high-magnetic ores. NPO “Erga”. Available at: http://mining.erga.ru/articles/230/ (accessed: 15.09.2017).
7. Separators. NPK “Mekhanobr-tekhnika” (AO). Available at: http://mtspb.com/separatory/ (accessed 15.09.2017).
8. Moskalenko T. V., Mikheev V. A., Danilov O. S. Investigation of influence of magnetic field on peat briquettability. Thesis of report of the VII Congress of dressers of CIS countries. Moscow : MISiS, 2009. Vol. 3. p. 548.
9. Kritskaya M. Zh., Panshin A. M., Evdokimov S. I. Industrial practice of extraction of free gold by magnetic-liquid separation. Thesis of report of the VII Congress of dressers of CIS countries. Moscow : MISiS, 2009. p. 742.
10. Fedoseev I. V. Concentration of platinum metals from Norilsk concentration plant tails with magnetic separation. Tsvetnye Metally. 2006. No. 3. pp. 39–41.
11. Arsentev V. A., Dmitriev S. V., Mezenin A. O., Kotova E. L. Material composition of ashes from combined heat and power plants and the technology for its disposal. Obogashchenie Rud. 2015. No. 4. pp. 49–54. DOI: 10.17580/or.2015.04.09
12. Lesovik R. V. Complex use of tails of water magnetic separation of ferrugnious quartzites. Gornyi Zhurnal. 2004. No. 1. pp. 76–77.
13. Watson J. H. P., Bolt L. High Temperature Superconductors for Magnetic Separation. Proceedings of the XXI International Mineral Processing Congress. Amsterdam : Elsevier, 2000. Vol. C: Oral Sessions. No. A7: Physical Separation Processing. pp. 105–114.
14. Gillet G., Diot F., Lenoir M. Advances in Сryomagnetic Separation Process: Industrial Minerals and Waste Effluent. Proceedings of the XXI International Mineral Processing Congress. Amsterdam : Elsevier, 2000. Vol. C: Oral Sessions. No. A7: Physical Separation Processing. pp. 27–34.
15. Chanturiya V. A., Bunin I. Zh., Ivanova T. A., Khatkova A. N., Dutov V. V. Intensification of the processes of dressing of zeolite-bearing rocks of the Eastern Transbaikalian region. Thesis of report of the VII Congress of dressers of CIS countries. Moscow : MISiS, 2009. p. 539.
16. Gao M., Holmes R. The lates developments in fine and ultrafine grinding technologies. Proceedings of the XXIII International Mineral Processing Congress. Istanbul, 2006. pp. 30–37.
17. Mezenin A. O., Andreev E. E., Dmitriev S. V. Electromagnetic separator for environmentally-friendly dry concentration of weak-magnetic finely impregnated ferrous metal ores. Obogashchenie Rud. 2011. No. 3. pp. 31–35.
18. Vaysberg L. A, Demidov I. V., Ivanov K. S. Mechanics of granular media under vibration action: the methods of description and mathematical modeling. Obogashchenie Rud. 2015. No. 4. pp. 21–31. DOI: 10.17580/or.2015.04.05
19. Blekhman I. I., Vaysberg L. A. Toward a theory of vibrational segregation. Obogashchenie Rud. 2014. No. 5. pp. 35–40.
20. Arsentev V. A., Vaysberg L. A., Ustinov I. D. Trends in development of lawwater-consumption technologies and machines for finely ground mineral materials processing. Obogashchenie Rud. 2014. No. 5. pp. 3–9.
21. Dmitriev S. V., Kotova E. L., Mezenin A. O. The Oshurkovskoye deposit apatite ore material composition and dry processing technology. Obogashchenie Rud. 2016. No. 2. pp. 9–13. DOI: 10.17580/or.2016.02.02

Language of full-text русский
Полный текст статьи Получить
Назад