Журналы →  Tsvetnye Metally →  2017 →  №4 →  Назад

NANOSTRUCTURED METALS AND MATERIALS
Название Synthesis and structure of titanium oxide based nanostructured microtubes
DOI 10.17580/tsm.2017.04.08
Автор Zheleznov V. V., Sushkov Yu. V., Sarin S. A., Voyt E. I.
Информация об авторе

Institute of Chemistry of Far Eastern Branch of Russian Academy of Sciences, Vladivistok, Russia:

V. V. Zheleznov, Leading Researcher, e-mail: zheleznov_sergey@mail.ru
Yu. V. Sushkov, Engineer
S. A. Sarin, Junior Researcher
E. I. Voyt, Senior Researcher

Реферат

Nanostructured microtubes of the composition TiO2/ZrO2/SiO2 with a variable content of zirconium oxide (from 0 to 27 wt. %) were synthesized by the template sol-gel method. The activated carbon fiber was used as template. The materials were synthesized using two sets of precursors: TiCl4, ZrOCl2 and Ti2(SO4)3, ZrO(NO3)2. The dependence of the materials morphology and structure on the synthesis conditions was investigated by scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), and Raman spectroscopy. The samples structure and morphology depend on the Zr-dopant content to a greater extent than on the treatment temperature (550–850 oC). The increased content of the Zr-dopant (higher than 5.2 wt. %) results in redistribution of the Ti/Zr oxide ratio and is accompanied with destruction of microtubes. Differences in the morphology of obtained microtubes using chloride and sulfate precursors are related to the ratio between sizes of colloid particles in initial solutions and those of template mesopores.
Synthesis and investigation of morphology and structure of materials were carried out within the program of fundamental scientific investigations RAS (project No. 0265-2014-0001).

Ключевые слова Template, sol-gel, TiO2, ZrO2, microtubes, anatase, ZrTiO4, nanomaterial
Библиографический список

1. Chen X., Mao S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chemical Reviews. 2007. Vol. 107, No. 7. pp. 2891–2959.
2. Gupta S. M., Tripathi M. A review of TiO2 nanoparticles. Chinese Sci Bull. 2011. Vol. 56, No. 16. pp. 1639–1657.
3. Kubacka A., Fernández-García M., Colon G. Advanced nanoarchitectures for solar photocatalytic applications. Chemical Reviews. 2012. Vol. 112. pp. 1555–1614. DOI: 10.1021/cr100454n
4. Reddy B. M., Khan A. Recent advances on TiO2–ZrO2 mixed oxides as catalysts and catalyst supports. Catalysis Reviews. 2005. Vol. 47, No 2. pp. 257–296.
5. Venkatachalam N., Palanichamy M., Arabindoo B., Murugesan V. Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. Journal of Molecular Catalysis A – Chemical. 2007. Vol. 266, No. 1. pp. 158–165.
6. Chen X., Wang X., Fu X. Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy & Environmental Science. 2009. Vol. 2. pp. 872–877.
7. Inorganic and Metallic Nanotubular Materials: Recent Technologies and Applications. Ed.: T. Kijima. Berlin; Heidelberg : Springer, 2010. Vol. 117. 300 p.
8. Chang S., Doong R. Characterization of Zr-doped TiO2 nanocrystals prepared by a non-hydrolytic sol-gel method at high temperatures. Journal of Chemical Physics B. 2006. Vol. 110, No. 42. pp. 20808–20814.
9. Uhlmann D., Teowee G. Sol-gel science and technology: current state and future prospects. Journal of Sol-Gel Science and Technology. 1998. Vol. 13, No. 1. pp. 153–162.
10. Gnedenkov S. V., Opra D. P., Zheleznov V. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A. et al. Nanostructured zirconia-doped titania as the anode material for lithium-ion battery. Russian Journal of Inorganic Chemistry. 2015. Vol. 60. pp. 658–664.
11. Roy D., Barber Z. H., Clyne T. W. Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition. Journal of Applied Physics. 2002. Vol. 91, No. 9. pp. 6085–6088.
12. Svergun D. I. Determination of the regularization parameter in indirecttransform methods using perceptual criteria. Journal of Applied Crystallography. 1992. Vol. 25, No. 4. pp. 495–503.
13. Semenyuk A. V., Svergun D. I. GNOM — a program package for smallangle scattering data processing. Journal of Applied Crystallography. 1991. Vol. 24, No. 5. pp. 537–540.
14. Bolze J., Rekhi S., Macchiarola K., Litteer B. Size distribution determination of nanoparticles and nanosized pores by small-angle X-ray scattering on a multi-purpose X-ray diffractometer platform. NSTI-Nanotech 2010. Technical proceedings. 2010. Vol. 1. pp. 57–60.
15. Jackson Jr. M. N., Jr. Kamunde–Devonish M. K., Hammann B. A., Wills L. A., Fullmer L. B., Hayes S. E., Cheong P. H.-Y., Casey W. H., Nyman M. D., Johnson D. W. An overview of selected current approaches to the characterization of aqueous inorganic clusters. Dalton Transactions. 2015. Vol. 44. pp. 16982–17006.
16. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Modin E. B., Podgorbunsky A. B., Sushkov Y. V., Zheleznov V. V. Characterization and electrochemical properties of nanostructured Zr-doped anatase TiO2 tubes synthesized by sol-gel template route. Journal of Materials Science & Technology. 2016. DOI: 10.1016/j.jmst.2016.11.011
17. Zhang H., Banfield J. F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chemical Reviews. 2014. Vol. 114. pp. 9613–9644.
18. Ohsaka T. Temperature dependence of the raman spectrum in anatase TiO2. Journal of the Physical Society of Japan. 1980. Vol. 48, No. 5. pp. 1661–1668.
19. Frank O., Zukalova M., Laskova B. Kürti J., Koltai J., Kavan L. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Physical Chemistry Chemical Physics. 2012. Vol. 14, No. 42. pp. 14567–14572.
20. Karakchiev L. G., Zima T. M., Lyakhov N. Z. Low temperature synthesis of zirconium titanate. Inorganic Materials. 2001. Vol. 37, No. 4. pp. 386–390.
21. Lucena P. R., Leite E. R., Pontes F. M., Longo E., Pizani P. S., Varela J. A. Photo luminescence: A probe for short, medium and long-range selforganization order in ZrTiO4 oxide. Journal of Solid State Chemistry. 2006. Vol. 179, No. 12. pp. 3997–4002.
22. Cadoret L., Rossignol C., Dexpert–Ghys J., Caussat B. Chemical vapor deposition of silicon nanodots on TiO2 submicronic powders in vibrated fluidized bed. Masterials Science and Engineering: B. 2010. Vol. 170, No. 1–3. pp. 41–50.

23. Amlouk A., Mir L.El, Kraiem S., Alaya S. Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix. Journal of Physics and Chemistry of Solids. 2006. Vol. 67, No. 7. pp. 1464–1468.
24. Bokhimi X., Morales A., Ortíz E., López T., Gómez R., Navarrete J. Sulfate ions in titania polymorphs. Journal of Sol-Gel Science and Technology. 2004. Vol. 29. pp. 31–40.
25. Gupta S. K., Desai R., Jha P. K., Sahoo S., Kirin D. Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. Journal of Raman Spectroscopy. 2010. Vol. 41, No. 3. pp. 350–355.
26. Zhang W. F., He Y. L., Zhang M. S., Yin Z., Chen Q. Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D: Applied Physics. 2000. Vol. 33. pp. 912–916.
27. Lejon C., Osterlund L. Influence of phonon confinement, surface stress, and zirconium doping on the Raman vibrational properties of anatase TiO2 nanoparticles. Journal of Raman Spectroscopy. 2011. Vol. 42. pp. 2026–2035.
28. Bassi A. L., Cattaneo D., Russo V., Bottani C. E., Barborini E. et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. Journal of Applied Physics. 2005. Vol. 98, No. 7. pp. 074305–074305-9.
29. Pal M., Pal U., Jimenez J.M.G.Y., Pérez-Rodríguez F. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Research Letters. 2012. Vol. 7, No. 1. pp. 1–12.
30. Yu J. C., Lin J., Kwok R. W. M. Ti1–xZrxO2 Solid Solutions for the Photocatalytic Degradation of Acetone in Air. Journal of Physical Chemistry: B. 1998. Vol. 102, No. 26. pp. 5094–5098.
31. Swamy V., Kuznetsov A., Dubrovinsky L. S., Caruso R. A., Shchukin D. G., Muddle B. C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Physical Reviews: B. 2005. Vol. 71, No. 18. pp. 184302–184302-11.
32. Saviot L., Machon D., Debbichi L., Girard A., Margueritat J., Krüger P., de Lucas M. C. M., Mermet A. Optical and acoustic vibrations confined in anatase TiO2 nanoparticles under high–pressure. The Journal of Physical Chemistry: C. 2014. Vol. 118, No. 19. pp. 10495–10501.
33. Georgescu D., Baia L., Ersen O., Baia M., Simon S. Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy. Journal of Raman Spectroscopy. 2012. Vol. 43, No. 7. pp. 876–883.
34. Zheleznov V. V., Sushkov Y. V., Voit E. I., Sarin S. A., Dmitrieva E. É. Effect of ZrO2 on the structure of ZrO2/TiO2/SiO2 nanocomposites fabricated by a template sol-gel method. Journal of Applied Spectroscopy. 2015. Vol. 81, No. 6. pp. 983–989.
35. Ocana M., Garcia-Ramos J. V., Serna C. J. Low-temperature nucleation of rutile observed by raman spectroscopy during crystallization of TiO2. Journal of American Ceramic Society. 1992. Vol. 75, No. 7. pp. 2010–2012.
36. Mattsson A., Lejon C., Andersson P. O., Österlund L., Štengl V., Bakardjieva S., Opluštil F. Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Applied Catalysis B: Environmental. 2009. Vol. 92, No. 3–4. pp. 401–410.
37. Ortel E., Sokolov S., Zielke C., Lauermann I., Selve S., Weh K., Paul B., Polte J., Kraehnert R. Supported mesoporous and hierarchical porous Pd/TiO2 catalytic coatings with controlled particle size and pore structure. Chemistry of Materials. 2012. Vol. 24, No. 20. pp. 3828–3838.
38. Martin C. R. Nanomaterials: a membrane-based synthetic approach. Science. 1994. Vol. 266. pp. 1961–1966.

Полный текст статьи Synthesis and structure of titanium oxide based nanostructured microtubes
Назад