Journals →  Non-ferrous Metals →  2016 →  #2 →  Back

ArticleName Oxide semiconductors usage in beta-voltaic elements
DOI 10.17580/nfm.2016.12.08
ArticleAuthor Davydov A. A., Fedorov E. N., Mokrushin A. A., Popkova A. V.

Federal State Unitary Enterprise “Science and Production Association “Luch”, Podolsk, Russia:

A. A. Davydov, Leading Software Engineer
E. N. Fedorov, Head of Laboratory
A. A. Mokrushin, Head of Laboratory
A. V. Popkova, Senior Researcher, e-mail:


Making beta-voltaic cells (nuclear batteries) is nowadays a promising line for developing a new generation of semiconductors. Improving characteristics of these cells requires development and use of new semiconducting materials and technologies of their manufacturing which should provide an effective ionizing radiation energy transformation, continuous operation life and manufacturability. It is proposed a polycrystalline semiconducting materials usage in order to provide stable characteristics of nuclear batteries during their service life. The distinctive feature of these materials in comparison with the high-ordered monocrystals is their less sensitivity to radiation-induced defects in the lattice, arising under the influence of ionizing radiation. Discussed are the prospects of polycrystalline semiconducting oxides usage for increasing efficiency of energy transformation in beta-voltaic cells under the prolonged exploitation conditions. It is shown that 63Ni may be simultaneously used as a radiation source and as a part of semiconductor converter based on the Schottky barrier junction or a rectifying heterostructure. It is suggested that the heterostructure with the required properties can be obtained when forming the TiO2 – NiO successive layers on titanic substrate. An experimental sample of such structure has been obtained and an electronic microscopical analysis of the interface element composition has been implemented. Applicability of the proposed approaches to making the 63Ni-based beta-voltaic cells is shown.

This work was performed under the State assignment with financial support of the Ministry of Education and Science of the Russian Federation for 2015–2016, agreement No. 14.625.21.0031 (the unique identifier of the applied scientific research (project) is RFMEFI62515X0031).

keywords Beta-voltaic element, oxide semi-conductors, 63Ni, rectifying contacts, energy converter, nuclear battery

1. Davydov A. A., Markovin S. A., Popkova A. V., Fedorov E. N. Razrabotka istochnikov-izlucheniya na osnove nikelya-63 s preobrazovatelyami β-izlucheniya razlichnogo tipa (Development of β-radiation sources on the basis of 63Ni with-radiation converters of different types). Tsvetnye metally = Non-ferrous Metals. 2016. No. 7 (883). pp. 71–75.
2. Akulshin Yu. D., Lure M. S., Pyatyshev E. N., Glukhovskoy A. V., Kazakin A. N. Beta-voltaicheskiy MEMSpreobrazovatel energii (Beta-voltaic MEMS converter). Nauchno-tekhnicheskie vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravlenie = St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems. 2014. Iss. 5 (205). pp. 35–42.
3. Nagornov Yu. S., Murashev V. N. Modelirovaniye betavoltaicheskogo effekta na kremnievykh pin-strukturakh pti obluchenii β-istochnikom nikel-63 (Modelling a beta-voltaic effect on the silicon pin-structures when irradiating 63Ni by β-source). Fizika i tekhnika poluprovodnikov = Semiconductors. 2016. Vol. 50, Iss. 1. pp. 17–22.
4. Revankar S. T., Adams T. E. Advanced in betavoltaic power sources, Journal of Enerdgy and power Sources. 2014. Vol. 1, No. 6. pp. 321–329.
5. Chen Haiyang, Yin Jianhua, Li Darang. Electrode pattern design for GaAs betavoltaic batteries. Journal of semiconductors. 2011. Vol. 32, No. 8. p. 4006.
6. Vasiliev A. M., Landsman A. P. Poluprovodnikovye fotopreobrazovateli (Semiconductor photoconverters). Moscow : Sovetskoye Radio, 1971.
7. Kulakov V. M., Ladygin E. A., Shakhovtsev V. I. et al. Deistviye pronikayushchey radiatsii na izdeliya elektronnoy tekhniki (The penetrating radiation effect on the electronic engineering goods). Moscow : Sovetskoye Radio, 1980.
8. Kalygina V. M., Novikov V. A., Petrova Yu. S., Tolbanov O. P., Tchernikov E. V., Tsupii S. Yu., Yaskevich T. M. Svoystva plenok TiO2 na kremnievykh podlozhkakh (Features of the TiO2 films on silicon substrates). Fizika i tekhnika poluprovodnikov = Semiconductors. 2014. Vol. 48, Iss. 6. pp. 759–762.
9. Zhang S. B., Wei S. H., Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B. 2001. Vo. 63. p. 75201.
10. Van de Krol R., Tuller H. L. Electroceramics — the role of interfaces. Solid State Ionics. 2002. Vol. 150. pp. 167–179.
11. Makovskii F. A., Usachev E. P. Vypryamiteli na osnove poluprovodnikovoy dvuokisi titana (The rectifiers based on the semiconductor titanium dioxide). Moscow : Nauka, 1966.
12. Li FengHua, Gao Xu, Yuan Yuanlin, Yuan JinShe, Lu Min. GaN PIN betavoltaic nuclear batteries. Nuclear Science and Technology. 2014. Vol. 57, No. 1. pp. 25–28.
13. Ugay Ya. A. Vvedeniye v khimiyu poluprovodnikov (Introduction to Chemistry of Semi-conductors). Moscow : Vysshaya shkola, 1965.
14. Stefanovych G. B., Pergament A. L., Boriskov P. P., Kuroptev V. A., Stefanovych T. G. Zaryadoperenos v vypryamlyaushchikh oksidnykh geterostrukturakh i oksidnye elementy dostupa (Charge transfer in rectifying oxide heterostructures and oxide access elements in ReRAM). Fizika i tekhnika poluprovodnikov = Semiconductors. 2016. Vol. 50, Issue 5. pp. 650–656.

Full content Oxide semiconductors usage in beta-voltaic elements