Journals →  Non-ferrous Metals →  2016 →  #2 →  Back

ArticleName Prospects of non-ferrous metals detecting in samples with use of nuclear physical and X-ray fluorescence methods
DOI 10.17580/nfm.2016.02.04
ArticleAuthor Solovev V. Yu., Antsiferova А. А., DeminV. F., Fatkina S. S.

A. I. Burnazyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia:

V. Yu. Solovev, Head of Laboratory of Anthropogenic Risk Analysis, Doctor of Biological Sciences, Candidate of Technical Sciences, e-mail:

S. S. Fatkina, Researcher of Laboratory of Information and Analytical Systems


A. I. Burnazyan Federal Medical Biophysical Center, Federal Medical-Biological Agency1, Moscow, Russia ; National Research Center “Kurchatov Institute”2, Moscow, Russia.
V. F. Demin, Leading Researcher of Laboratory of Nanonsafety, Candidate of Physical and Mathematical Sciences1,2

National Research Center “Kurchatov Institute”, Moscow, Russia:

А. А. Antsiferova, Head of Laboratory of Nanosafety


There were carried out theoretical and experimental grounds of possibility of the nuclear physical and X-ray fluorescence methods usage for detecting non-ferrous metals and its compounds (including ultradispersed form) in different samples. It was experimentally shown a principal possibility of estimation of the gold (including its ultradispersed form) content in samples in amounts up to 10–11 g/sample with the use of the IR-8 (ИР-8) research nuclear reactor with the average flux density of thermal neutrons equaled to 3·1012 n/(cm2·s). Considering existing limitations of the maximum sample mass up to 0.5 kg, it is possible to estimate the gold content in samples in concentrations substantially smaller than the commercially profitable value. The experiment on fast neutrons and fast protons of the U-150 (У-150) isochronous cyclotron of the National Research Center (NRC) “Kurchatov Institute” has showed possibility of detecting titanium content in samples in the form of the TiO2 powder in the ultradispersed form or rutile. Nuclear reactions of titanium nuclei interactions with fast neutrons generate 46Sc and 47Sc radioactive isotopes of scandium and interactions with fast protons generate 48V isotope of vanadium, which possess characteristics acceptable for gamma spectroscopy analysis. There are also examined application prospects of the X-ray fluorescence analysis version which use not roentgen but synchrotron radiation — bremsstrahlung of electrons, moving along the curved trajectory. This allows to significantly raise the limits of elements detection (by 1–2 order when compared to X-ray tubes) and to analyze samples of extremely small volume and mass (about units of mg). The proposed set of methods gives principal possibility to detect several tens of non-ferrous metals.

This work has been carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 14.604.21.0114 of August 11, 2014. Unique identifier of the agreement RFMEFI60414X0114). The unique plant — the IR-8 research reactor of the National Research Center “Kurchatov Institute” and equipment from the Multiple-Access Center of the M. V. Lomonosov Moscow State University have been used to fulfill the presented research.

keywords Non-ferrous metals, nuclear physical methods, charged particles, X-ray fluorescence methods, ultradispersed particles, nondestructive detection methods, nanoparticles, gold content, heterophasis dispersed system

1. Antsiferova I. V. Nanomaterials and Potential Environmental Risks. Russian Journal of Non-Ferrous Metals. 2011. Vol. 52, No. 1. pp. 120–124.
2. Frontasieva M. V. Neitronnyi aktivatsionnyi analiz v naukakh o zhyzni (Neutron activation analysis in the life sciences. Fizika elementarnykh chastits i atomnogo yadra = Physics of Elementary Particles and Atomic Nuclei. 2011. Vol. 42, No. 2. pp. 636—716.
3. Demin V. F., Antsiferova A. A., Buzulukov Yu. P., Demin V. A., Soloviev V. Yu. Nuclear Physical Method for the Detection of Chemical Elements in Biological and Other Samples Using Charged Particles Activation. Medical Radiology and Radiation Safety. 2015. Vol. 60, No. 2. pp. 60–65.
4. Alov N. V. Rentgenofluorestsentnyi analiz s polnym vneshnim otrazheniem: fizitcheskie osnovy i analiticheskoe primineniye (obzor) (X-ray Fluorescence analysis with complete external reflection: physical basis and analytical application (review)). Zavodskaya laboratoriya. Diahnostika materialov = Industrial Laboratory. Materials diagnostics. 2010. Vol. 76, No. 1. pp. 4–14.
5. West M., Elis A. T., Potts P. J., Streli C., Vanhoof C., Wobrauschek P. 2014 Atomic Spectrometry Update — a Review of Advances in X-Ray Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry. 2014. Vol. 29. pp. 1516–1563.
6. Soloviev V. Yu., Demin V. F., Demin V. A., Fatkina S. S. Yaderno-fizicheskie metody detektirovaniya soderzhaniya tsvetnykh metallov v obraztsakh na osnove aktivatsii neitronami i zaryazhennymi chastitsami (Nuclear physical methods of detection of non-ferrous metals content in samples based on the neutron and charged particles activation). Tsvetnye metally = Non-Ferrous Metals. 2016. No. 6. pp. 62–66.
7. Buzulukov Yu. P., Gmoshinskii I. V., Raspopov R. V., Demin V. F., Soloviev V. Yu., Kuzmin P. G., Shafeev G. A., Khotimchenko S. A. Izucheniye absorbtsii I bioraspredeleniya nanochastits nekotorykh neorganicheskykh veshchestv, vvodimykh v zheludochno-kishechnyi trakt krys, s ispolzovaniem metoda radioaktivnykh indikatorov (Study of absorption and biodistribution of nanoparticles of some nonorganic substances, introduced into the rats’ gastrointestinal tract with the use of the radioactive indicators method). Meditsinskaya radiologiya I radiatsionnaya bezopasnost = Medical Radiology and Radiation Safety. 2012. Vol. 57, No. 3. pp. 5–12.
8. Shilo N. A., Ippolitov E. G., Ivanenko V. V., Kustov V. N., Zheleznov V. V., Aristov G. N., Shtan A. S., Ivanov I. N., Kovalenko V. V., Kondratev N. B. Instrumental Neutron Activation Determination of Gold in Mineral Raw Materials Using a Californium Neutron Source. Journal of Radioanalytical and Nuclear Chemistry. 1983.Vol. 79. P. 309–316.
9. Ageev O. A., Medkov M. A., Ivannikov S. I., Yudakov A. A. Perspektivy zolotodobychi iz tekhnogennykh obiektov mestorozhdeniya Nagima (Prospects of gold-mining out of the man-caused objects of Nagima deposit). Tsvetnye metally = Non-Ferrous Metals. 2015. No. 3. pp. 78–84.
10. Morgan T. J., George A., Boulamanti A. K., Alvares P., Adanouj I., Dean C., Vassiliev S. V., Baxter D., Andersen L. K. Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucaliptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer. Energy Fuels. 2015. Vol. 29, No. 3. pp. 1669–1685.
11. Bilo F., Borgese L., Zacco A., Zoani C., Zappa G., Boutempi E., Depero L. E. Total Reflection X-Ray Fluorescence Spectroscopy to Evaluate Heavy Metals Accumulation in Legumes by HPTLC Method. Journal of Analytical and Bioanalytical Techniques. 2016. Vol. 7. P. 292.
12. Min Yao, Dongyue Wang, Min Zhao. Element Analysis Based on Energy-Dispersive X-Ray Fluorescence. Advances in Materials Science and Engineering. 2015. DOI:
13. West M., Elis A. T., Potts P. J., Streli C., Vanhoof C., Wobrauschek P. 2014 Atomic Spectrometry Update — a Review of Advances in X-Ray Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry. 2014. Vol. 29. pp. 1516–1563.
14. Solodukhin V., Silachyov I., Poznyak V., Gorlachev I. Development of the complex of nuclear-physical methods of analysis for geology and technology tasks in Kazakhstan. Journal of Radioanalytical and Nuclear Chemistry. 2016. Vol. 309. pp. 125–134.
15. Oskolok K. V., Garmai A. V., Monogarova O. V. Kolichest vennyi rentgenofluorestsentnyi analiz mnohoelementnykh obiektov slozhnoi formy bez ispolzovaniya obraztsov sravneniya (Quantitative X-Ray Fluorescence analysis of multielement objects with complex form without use of comparison patterns). Vestnik Moskovskogo universiteta. Ser. 2. Khimiya = Moscow University Bulletin. Series 2. Chemistry. 2014. Vol. 55, No. 1. pp. 10–14.
16. Darin A. V., Rakshun Yu. V. Metodika vypolneniya izmerenii pri opredelenii elementnogo sostava obraztsov gornykh porod metodom rentgenofluorestsentnogo analiza s ispolzovaniem sinkhrotronnogo izlucheniya iz nakopitelya VEPP-3 (Procedure of measurements implementation when detecting element composition of rocks samples by X-Ray fluorescence method by the use of synchroton radiation out of the VEPP-3 storage ring). Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science Bulletin of NSTU. 2013. No. 2. pp. 112–118.

Full content Prospects of non-ferrous metals detecting in samples with use of nuclear physical and X-ray fluorescence methods