Журналы →  Chernye Metally →  2016 →  №11 →  Назад

Rolling and other metal forming processes
Название Microalloying of structural low-carbon steel with improved atmospheric corrosion resistance for bridge building
Автор E. A. Goli-Oglu
Информация об авторе

NLMK DanSteel (Frederiksvaerk, Denmark):

Goli-Oglu E. A., Cand. Eng., Prof., Technology Manager, e-mail: ego@nlmk.com

Реферат

The article presents the results of industrial production at NLMK DanSteel 4200-mm rolling mill for heavy plates in thickness range till 60 mm from low carbon steel, additionally alloyed with copper and chromium, which provides improved atmospheric corrosion resistance of steel. This type of steel is used in transport sector, especially in bridge building and overpasses. Two different chemical compositions of low-carbon structural steel with improved atmospheric corrosion resistance have been developed. The relationship between level of mechanical properties, microalloying using niobium, vanadium, titanium and normalizing/normalizing rolling production technology has been investigated. The optimal process parameters for the production using various combinations of microalloying were determined. Expedience of differentiated steel microalloying using niobium depending on thickness of rolled plates is displayed. Problems with high rejection rate due to surface defects from continuous casting and mechanical properties during first stage of production have been solved. The hardening effect caused by steel alloying using Cu and Cr has been analyzed and allows to continue development of production technology of high-strength rolled products with resistance to atmospheric corrosion.

Ключевые слова Steel, heavy plate, improved atmospheric corrosion resistance, microalloying, normalizing, normalizing rolling, mechanical properties
Библиографический список

1. European standard EN 10025-5. Hot rolled products of structural steels. Part 5: Technical delivery conditions for Structural steels with improved atmospheric corrosion resistance. Brussels, 2004. 26 p.
2. Kimura M., Kihira H. Nanoscopic mechanism of protective rust formation on weathering steel surface. Nippon Steel Technical Report. 2005. No. 91. pp. 86–90.
3. Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corrosion Science. 1994. No. 36. pp. 283–299.
4. Kamimura T., Hara S., Miyuki H., Yamashita M., Uchida H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corrosion Science. 2006. No. 8. pp. 2799–2812.
5. ASTM G101-04. Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels, ASTM International, West Conshohocken, PA, 2015. 9 p.
6. Sarkits I. G., Bokachev Yu. A., Goli-Oglu E. A. Proizvodstvo tolstolistovogo prokata na stane 4200 zavoda kompanii NLMK DanSteel (Production of heavy plates in the 4200-mm heavy plate mill at NLMK DanSteel). Chernye Metally = Ferrous metals. 2014. No. 10. pp. 21–24.
7. Goli-Oglu E. A., Bokachev Yu. A., Polunina L. V., Klimenko E. S. Issledovanie metallurgicheskogo kachestva tolstogo lista iz C-Mn- i C-Mn-Nb- kotelnoy stali posle normalizatsii i normalizatsionnoy prokatki na stane 4200 NLMK DanSteel (Investigation of metallurgical quality of heavy plates of C–Mn and C–Mn–Nb steels for boilers and high pressure vessels after normalizing and normalizing rolling at NLMK Dan-Steel). Chernye Metally = Ferrous metals. 2015. No. 2. pp. 19–27.
8. Smirnov L. A., Panfi lova L. M., Belenkiy B. Z. Problemy rasshireniya proizvodstva vanadiysoderzhashchikh staley v Rossii (Problems of expanding the production of vanadium-bearing steels in Russia). Stal = Steel. 2005. No. 6. pp. 108–115.
9. Smirnov L. A., Dobuzhskaya A. B., Syreyshchikova V. I. Perspektivy proizvodstva i primeneniya vanadiysoderzhashchikh nizkolegirovannykh staley (Prospects of production and application of lowalloyed vanadium-bearing steels). Stal = Steel in Translation. 2001. No. 9. pp. 111–117.
10. Mintz B., Abushosha R. The infl uence of vanadium on the hot ductility of steel. Ironmaking and Steelmaking. 1993. Vol. 20. pp. 445–452.
11. Banks K.M., Tuking A., Mintz B. The influence of N on hot ductility oj V-, Nb-, and Nb-Ti containing steels using improved thermal simulation of continuous casting. The Journal of the Southern African Institute of Mining and Metallurgy. 2011. Vol. 11. pp. 711–716.
12. Chervonyy A. V., Ringinen D. A., Astafev D. S., Efron L. I. Issledovanie goryachey plastichnosti trubnykh mikrolegirovannykh staley proizvodstva liteyno-prokatnogo kompleksa (Investigation of hot ductility of micro-alloyed pipe steels of casting and rolling complex production). Problemy chernoy metallurgii = Ferrous metallurgy problems. 2015. No. 2. pp. 1–8.
13. Goli-Oglu E. A., Bokachev Yu. A. Termomekhanicheskaya obrabotka plit tolshchinoy do 100 mm iz nizkolegirovannoy konstruktsionnoy stali v NLMK DanSteel (Controlled processing of thick low-alloy structural steel plate at NLMK DanSteel). Stal = Steel in Translation. 2014. No. 9. pp. 71–78.
14. Vereinbarung zur Begutachtung von Erzeugnissen (Band, Blech, Breitflachstahl), die mit geregelter Temperaturführung beim und nach dem Walzen hergestellt werden, zum Nachweis der Gleichwertigkeit mit dem Normalglühen. Vd. TÜV — Merkblatt Werkstoffe 1263. 1976. p. 4.

Language of full-text русский
Полный текст статьи Получить
Назад