Журналы →  Chernye Metally →  2016 →  №5 →  Назад

Rolling and Metal Forming
Название Bending of sheet billets for longitudinal-welded tubes
Автор Yu. A. Alyushin, S. V. Samusev, G. P. Zhigulev
Информация об авторе

National University of Science and Technology “MISiS” (Moscow, Russia):

Alyushin Yu. A., Dr. Eng., Prof., alyushin7@gmail.com
Samusev S. V., Dr. Eng., Prof., samusev@misis.ru
Zhigulev G. P., Cand. Eng., Ass. Prof., zhigulev@misis.ru

Реферат

Production of longitudinal-welded steel tubes for pipelines on modern high-performance tube welding lines includes bending of billet edges, step-by-step forming of the central section, sizing at mills to the preset ovality and tube expanding with its consequent forming of the finished tube profile. Three mathematical models describing the motion of particles in the Lagrange form are suggested for description of heterogeneous strained state at each of the sections; such state provides the required residual curvature. Taking into account the principle of superposition of movements, the proposed models allow to analyze any local and integral characteristics of the processes at each section for forming of welded pipes, including residual curvature and energy-power parameters. The comparison of calculated and experimental regulations of the the external strip surface has been conducted, as well as the forces at different sections of the tube electric welded line TESA-1420 for manufacture of tubes with 1420 mm diameter. The experiments have been done on the strip billets of K60 steel with preset values of elasticity model, yield strength, plastic strengthening module. The strip sizes were 4357x12015x32 mm with bending section length 495 mm.

Ключевые слова Strip billet, bending, longitudinal-welded tubes, motion equations, Lagrange variables, movement superposition method, ovality
Библиографический список

1. Fan Lifeng, Gao Ying, Li Qiang, Xu Hongshen. Quality Control on Crimping of Large Diameter Welding Pipe. Chinese Journal of Mechanical Engineering. 2012. Vol. 1.
2. Tsuru E., Akata J., Shinohara K., Uoshida T. Numerical and experimental evaluation of formability and buckling resistance for high strenght steel UOE pipe. Zairyo to Prosesu = CAMP ISIJ. 2010. 23. No. 1(2). pp. 297–300.
3. Ren Qiang, Li Dayong, Zhou Tianxia et al. The simulation of UOE pipe forming by threedimensional fi nite element method [J]. Journal of Netshape Forming Engineering, 2011. No. 3(6). pp. 80–84 (in Chinese).
4. Rymov V. A., Polukhin P. I., Potapov I. N. Sovershenstvovanie proizvodstva svarnykh trub (Improvement of production of welded pipes). Moscow : Metallurgiya, 1983. 286 p.
5. Palumbo G., Tricarico L. Effect of forming and calibration operations on the final shape of large diameter welded tubes [J]. Journal of Materials Processing Technology. 2005. 164-165(5) 1 098.
6. Raffo J., Toscano R. G., Mantovano L., Dvorkin E. N. Numerical Model of UOE Steel Pipe: Forming Process and Structural Behavior. Mecanica Computacional. 2007. Vol. 26, No. 10. pp. 317–333.
7. Samusev S. V., Lyuskin A. V., Romantsev A. I. et al. Razrabotka metodiki rascheta parametrov instrumenta dlya unifi katsii grupp svarnykh trub na uchastke kromkogibochnykh pressov (Development of method of calculation of instrumental parameters for unification of welded pipe groups on the site of flanging presses). Izvestiya vuzov. Chernaya metallrugiya = Izvestiya. Ferrous metallurgy. 2013. No. 3. pp. 20–22.
8. Zhigulev G. P., Samusev S. V., Fadeev V. A. et al. Raschet energosilovykh parametrov protsessa gibki na uchastke proizvodstva svarnykh trub dlya magistralnykh truboprovodov (Calculation of energy-power parameters of bending process on the site of welded pipe production for main pipelines). Izvestiya vuzov. Chernaya metallrugiya = Izvestiya. Ferrous metallurgy. 2014. No. 7. pp. 39–42.
9. Feodosev V. I. Soprotivlenie materialov (Materials strength). Moscow : Publishing House of Bauman Moscow State Technical University, 2000. 592 p.
10. Alyushin Yu. A. Mekhanika tverdogo tela v peremennykh Lagranzha (Solid body mechanics in Lagrange variables). Moscow : Mashinostroenie, 2012. 192 p.
11. Alyushin Yu. A. et al. Energeticheskaya model obratimykh i neobratimykh deformatsiy (Energetic model of reversible and irreversible deformations). Moscow: Mashinostroenie, 1996. 128 p.
12. Lysov M. I. Teoriya i raschet protsessov izgotovleniya detaley metodami gibki (Theory and calculation of processes of detail manufacturing by bending). Moscow : Mashinostroenie, 1966. 236 p.
13. Erich Kamke. Spravochnik po obyknovennym differentsialnym uravneniyam (Ordinary differential equations reference book). Moscow : Nauka, 1971. 576 p.
14. Ilyushin A. A. Mekhanika sploshnoy sredy (Continuum mechanics). Moscow : Lenand, 2014. 287 p.
15. Zhelezkov O. S., Vinogradov A. G., Malakanov S. A. Energeticheskiy metod opredeleniya uprugogo pruzhineniya pri gibke sterzhnevykh zagotovok (Energetic method of defi nition of cushioning during bar billet bending). Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem = Forging and Stamping Production. Material Working by Pressure. 2013. No. 7. pp. 23–25.

Language of full-text русский
Полный текст статьи Получить
Назад