Journals →  Tsvetnye Metally →  2016 →  #3 →  Back

BENEFICATION
ArticleName Study of structure and phase composition of copper-cobalt sulfide ores of Dergamyshskoe deposit
DOI 10.17580/tsm.2016.03.02
ArticleAuthor Selivanov E. N., Gulyaeva R. I., Klyushnikov A. M.
ArticleAuthorData

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia:

E. N. Selivanov, Head of Laboratory of Non-ferrous Metals Pyrometallurgy, e-mail: pcmlab@mail.ru

R. I. Gulyaeva, Senior Researcher

A. M. Klyushnikov, Leading Engineer

Abstract

Structure and phase composition of the samples of copper-cobalt sulfide ores (Dergamyshskoe deposit) were studied using optical spectrometry, X-ray, electron microprobe, chemical and thermal (20–1000 oС) analysis data. According to the mineralogical composition and textural-structural peculiarities, the ores are typical for massive sulfide formation of the Southern Urals, and have a complex microstructure and high content of cobalt. Main phase components of the ore are pyrite and its modification (marcasite), and siderite, chalcopyrite, sphalerite, quartz, lizardite and talc. Copper is mainly revealed in the form of chalcopyrite, while zinc is revealed in the form of sphalerite. Cobalt is distributed evenly by pyrite and sphalerite, and its content in pyrite may reach 0.95%. This paper shows the validity of the equation expressing the dependence of the unit pyrite cell parameter (a) on composition and temperature. For the first time, argentopyrite (33.2% of iron, 38.8% of sulfur and 21.0% of silver) was found in ore. The particle size of mineral particles of non-ferrous metals in pyrite is 50–100 μm, suggesting the possibility of fine grinding with subsequent flotation beneficiation leading to the recovery of copper and zinc concentrate. At the same time, ore processing inevitably results in producing of pyrite concentrate, which, in its turn, cannot be processed cheaply and efficiently. There is a possibility of complex treatment of the ore by means of utilization as a sulfidizing reagent in blast smelting of oxidized nickel ores. The temperatures of initiation of sulfide thermal decomposition and oxidizing in the air were established, accompanied by release of SO2 in gaseous phase. The ore solid state oxidizing products are iron oxides, quartz and magnesium silicates.

This work was carried out with the financial support of Ural Branch of Russian Academy of Sciences (project No. 15-11-3-31).

keywords Copper-cobalt ore, phase composition, sulfides, structure, thermal properties, processing
References

1. Zaykov V. V., Melekestseva I. Yu Kobalt-mednokolchedannye mestorozhdeniya v ultramafitakh akkretsionnoy prizmy Zapadno-Magnitogorskoy paleostrovnoy dugi (Cobalt-copper-sulfide deposits in accretion prism ultramafites of West-Magnitogorsk paleoisland arc). Litosfera = Litosphere. 2005. No. 3. pp. 73–98.

2. Reznik I. D., Sobol S. I, Khudyakov V. M. Kobalt : v 2 tomakh. Tom 1 (Cobalt: in two volumes. Volume 1). Moscow : Mashinostroenie, 1995. 440 p.

3. Landolt C., Dutton A., Fritz A., Segsworth S. Nickel and Copper Smelting at Incos Copper Cliff Smelter. Proceedings of Paul E. Queneau International Simposium. Extractive Metallurgy of Copper, Nickel and Cobalt. 1993. Vol. II. pp. 1497–1527.

4. Crundwell F., Moats M., Ramachandran V., Robinson T., Davenport W. G. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. Oxford, UK : Elsevier, 2011. 622 p.

5. Rachkova E. N., Malikhov Yu. Z., Sharipov R. Kh. Problemy kompleksnoy pererabotki medno-kobaltovykh rud Dergamyshskogo mestorozhdeniya (Problems of complex processing of copper-coblat ores of Dergamyshskoe deposit). Trudy konferentsii “Perspektivy razvitiya metallurgii i mashinostroeniya s ispolzovaniem zavershennykh fundamentalnykh issledovaniy i nauchnoissledovatelskikh i opytno-konstruktorskikh rabot” (Proceedings of the conference “Prospects of development of metallurgy and mechanical engineering using finished fundamental investigations and R&D”). Ekaterinburg : Uralskiy rabochiy, 2015. pp. 408–410.

6. Ivanova V. P., Kasatov B. K., Krasavina T. N. Termicheskiy analiz mineralov i gornykh porod (Thermal analysis of minerals and rocks). Leningrad : Nedra, 1974. 399 p.

7. Handbook of Thermal Analysis and Calorimetry. Vol. 5 : Recent Advances, techniques and applications. Editors : M. E. Brown, P. K. Gallagher. Oxford : Elsevier B. V., 2008. 780 p.

8. Artemev D. A., Zaykov V. V. Talk-karbonatnye metasomatity i ikh rol v formirovanii kobalt-mednokolchedannogo orudeneniya v ultramafitakh Glavnogo Uralskogo razloma (Talc-carbonate metasomatites and their role in formation of cobalt-copper-sulfide mineralization in Main Urals Fault ultramafites). Litosfera = Litosphere. 2009. No. 1. pp. 47–69.

9. Melekestseva I. Yu. Geterogennye kobalt-mednokolchedannye mestorozhdeniya v ultramafitakh paleoostrovoduzhnykh struktur (Heterogeneous cobalt-coppersulfide deposits in paleoisland structure ultramafites). Miass : Institute of Mineralogy of Ural Branch of Russian Academy of Sciences, 2007. 245 p.

10. Nagaeva S. P., Mezentseva O. P., Kozorez M. V. Mineralogicheskie issledovaniya mednykh kobaltsoderzhashchikh rud Dergamyshskogo mestorozhdeniya (Mineralogical researches of copper cobalt-containing ores of Dergamysh deposit). Gornyi Zhurnal = Mining Journal. 2014. No. 11. pp. 31–35.

11. Vershinin A. D., Selivanov E. N., Danilushkin A. L. Teplovoe rasshirenie i razlozhenie FeS2–x i CuFeS2–x (Thermal expansion and decomposition of FeS2–x and CuFeS2–x). Neorganicheskie materialy = Inorganic Materials. 1998. Vol. 34, No. 12. pp. 1423–1427.

12. Pushcharovskiy D. Yu. Rentgenografiya mineralov (Mineral radiography). Moscow : JSC “Geoinformmark”, 2000. 292 p.

13. David I. Vaughan, James R. Craig. Khimiya sulfidnykh mineralov (Mineral chemistry of metal sulfides). Moscow : Mir, 1981. 567 p.

14. Luganov V. A., Shabalin V. I. Behaviour of Pyrite During Heating. Canadian Metallurgical Quarterly. 1982. Vol. 21, No. 2. pp. 157–162.

15. Luganov V. A., Shabalin V. I. Thermal Dissociation of Pyrite During Processing of Pyrite-Containing Raw Materials. Canadian Metallurgical Quarterly. 1994. Vol. 33, No. 3. pp. 169–174.

16. Chepushtanova T. A. Matematicheskoe modelirovanie protsessa termicheskogo razlozheniya pirita (Mathematical modeling of the process of thermal decomposition of pyrite). Vestnik Kazakhskogo natsionalnogo tekhnicheskogo universiteta = Bulletin of Kazakh National Technical University. 2012. No. 5. pp. 157–160.

17. Charpentier L., Masset P. J. Thermal Decomposition of Pyrite FeS2 under Reducing Conditions. Materials Science Forum. 2010. June, Vol. 654–656. pp. 2398–2401.

18. Volkhin A. I., Eliseev E. I., Zhukov V. P. Chernovaya med i sernaya kislota: fiziko-khimicheskie osnovy proizvodstva : v 2 tomakh. Tom 1 (Black copper and sulphuric acid: physical-chemical basis of production : in 2 volumes. Volume 1). Chelyabinsk : Kniga, 2004. 477 p.

19. Betekhtin A. G. Kurs mineralogii : uchebnoe posobie (Course of mineralogy: tutorial). Moscow : KDU, 2010. 736 p.

20. Kelamanov B., Tolymbekov M., Kaskin K., Baisanov A. Thermal Analysis of Agglomerated Nickel Ore. Proceedings Twelfth International Ferroalloys Congress. Outotec Oyj. Helsinki, Finland, 2010. June 6–9. pp. 657–660.

21. Selivanov E. N., Klyushnikov A. M., Gulyaeva R. I., Chumarev V. M., Zakirnichnyy V. N. Perspektivy pryamoy metallurgicheskoy pererabotki sulfidnykh rud (Prospects of direct metallurgical processing of sulfide ores). Trudy konferentsii “Perspektivy razvitiya metallurgii i mashinostroeniya s ispolzovaniem zavershennykh fundamentalnykh issledovaniy i nauchnoissledovatelskikh i opytno-konstruktorskikh rabot” (Proceedings of the conference “Prospects of development of metallurgy and mechanical engineering using finished fundamental investigations and R&D”). Ekaterinburg : Uralskiy rabochiy, 2015. pp. 309–312.

22. Selivanov E. N., Klyushnikov A. M., Gulyaeva R. I. Tekhnikoekonomicheskaya otsenka pryamoy metallurgicheskoy pererabotki sulfidnykh rud (Technical-economic assessment of direct metallurgical processing of sulfide ores). Tsvetnaya metallurgiya = Non-ferrous metallurgy. 2015. No. 3. pp. 15–21.

Language of full-text russian
Full content Buy
Back