Журналы →  Gornyi Zhurnal →  2016 →  №2 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Geomechanical assessment of geotechnology at a project stage of underground ore mining
DOI 10.17580/gzh.2016.02.08
Автор Freidin A. M., Neverov S. A., Neverov A. A., Konurin A. I.
Информация об авторе

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia:

A. M. Freidin, Chief Researcher, Professor, Doctor of Engineering Sciences
S. A. Neverov, Senior Researcher, Candidate of Engineering Sciences, nsa_nsk@mail.ru
A. A. Neverov, Senior Researcher, Candidate of Engineering Sciences
A. I. Konurin, Junior Researcher, Candidate of Engineering Sciences

Реферат

Based on the systematized experimental evaluations of the mechanical conditions, tectonic structures and physico-mechanical characteristics of rock masses, the authors have developed forecasting procedure for stress–strain state versus depth of rocks. The boundary conditions determined to correctly formulate applied geomechanical problems minimize uncertainties and errors of mine planning. The research findings have enabled typification of geomechanical conditions for ore bodies and classification of tectonic types of rock masses and the related models of rock masses based on type of their stress state. Application of rock mass models at the mine planning stage allows advanced reliability of selection of safe technology and its parameters for underground ore mining. The offered approach has been tested in planning of steep gold ore mining down to a depth of 800 m and more below ground surface. The stress–strain state forecast and geomechanical assessment of ore extraction technology using sublevel drifts at a depth of 800 m shows that the design parameters of the mining system meet the safe mining standards: safety pillars, crowns and pillars established between material handling declines have safety factors 1.3, 1.4 and more than 1.25, respectively. The main tool of the procedure is the classification of tectonic types of rock masses relative to their stress state and the design models of rock masses. It is intended to use the procedure at the stage of deep mine planning in order to assess all solutions and select safe geotechnologies, designs and parameters for ore mining based on criteria of structural weakening and strength of rocks.
The study was supported by the President of the Russian Federation, Grant No. 14.122.13.5000-MK.

Ключевые слова Rock mass, depth, geological structure, stress state, classification of geomechanical structures, methodology, geotechnology, overburden pressure, stability, safety
Библиографический список

1. Neverov S. A. Tipizatsiya rudnykh mestorozhdeniy s rostom glubiny po vidu napryazhennogo sostoyaniya. Chast I. Sovremennye predstavleniya o napryazhennom sostoyanii massivov gornykh porod s rostom glubiny (Types of orebodies on the basis of the occurrence depth and stress state. Part I: modern concept of the stress state versus depth). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2012. No. 2. pp. 56–70.
2. Neverov S. A. Tipizatsiya rudnykh mestorozhdeniy s rostom glubiny po vidu napryazhennogo sostoyaniya. Chast II. Tektonotipy rudnykh mestorozhdeniy i modeli geosredy (Types of orebodies on the basis of the occurrence depth and stress state. Part II: orebody tectonotypes and geomedium models). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2012. No. 3. pp. 25–35.
3. Zoback M. L., Zoback M. D., Adams J. Global patterns of tectonic stress nature. Nature. 1989. Vol. 341, No. 6240. pp. 291–298.
4. Schweitzer J. K., Johnson R. A. Geotechnical classification of deep and ultra-deep Witwatersrand mining areas, South Africa. Mineralium Deposita Journal.1997. No. 126. pp. 335–348.
5. Kelly B. Stress analysis for boreholes on department of defense lands in the western united states: a study in stress heterogeneity. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11–13, 2013. pp. 139–150.
6. Hergert T., Heidbach O. Geomechanical model of the Marmara Sea region — II. 3 contemporary background stress field. Geophysical Journal International. 2011. Vol. 185(3). pp. 1090–1102.
7. Gey N. C. The state of stress in large dyke on K.R.P.M. Buksburg, South Africa. International Journal of Rock Mechanics and Mining Science. 1980. Vol. 2. pp. 278–291.
8. Reiter K., Heidbach O. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth. 2014. No. 5. pp. 1123–1149.
9. Sibson R. H., Ghisetti F. C., Crookbain R. A. Andersonian wrench faulting in a regional stress field during the 2010–2011 Canterbury, New Zealand, earthquake sequence. University of Otago on September 30, 2012. pp. 7–18.
10. Havens J. B., Balzle M. L. Minimum horizontal stress in the bakken formation. 45th US Rock Mechanics. Geomechanics Symposium 2011, San Francisco, California, USA, 26–29 June 2011. pp. 904–910.
11. Vikulin A. V., Ivanchin A. G. O sovremennoy kontseptsii blochno-ierarkhicheskogo stroeniya geosredy i nekotorykh ee sledstviyakh v oblasti nauk o Zemle (Modern concept of block hierarchy in the structure of geomedium and its implications in geosciences). Fizikotekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2013. No. 3. pp. 67–85.
12. Zenkevich O. Metod konechnykh elementov v tekhnike (Finite element method in technics). Moscow : Mir, 1975.
13. Demenkov P. A., Karasev M. A., Potemkin D. A. Geomekhanicheskaya otsenka poetapnogo stroitelstva pilonnoy stantsii metropolitena glubokogo zalozheniya (Geomechanical assessment of the stepwise construction of pylon station of deep Metro). Zapiski gornogo instituta = Proceedings of the Mining Institute. 2011. No. 190. pp. 220–224.
14. Seryakov V. M. Matematicheskoe modelirovanie napryazhenno-deformirovannogo sostoyaniya massiva gornykh porod pri primenenii tekhnologiy s zakladkoy vyrabotannogo prostranstva (Mathematical modeling of stress–strain state in rock mass during mining with backfill). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2014. No. 5. pp. 51–60.
15. Nazarov L. A., Nazarova L. A., Usoltseva O. M., Kuchay O. A. Primenenie resheniy obratnykh zadach dlya otsenki sostoyaniya i svoystv geomekhanicheskikh obektov razlichnogo masshtabnogo urovnya (Estimation of state and properties of various-scale geomechanical objects using solutions of inverse problems). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2014. No. 5. pp. 33–44.

Language of full-text русский
Полный текст статьи Получить
Назад