Journals →  Chernye Metally →  2013 →  #10 →  Back

Iron and Steel Making
ArticleName Biomass use in steel industry: back to the future?
ArticleAuthor A. Babich, D. Senk

Rhein Westfalen Technical University RWTH (Aachen, Germany):

Babich A., Dr., Assist. Prof., Dept. of Ferrous Metallurgy (IEHK), E-mail:
Senk D., Dr. Eng., Prof., Dept. of Ferrous Metallurgy (IEHK)


Use of biomass can contribute to mitigation of the CO2 emissions in the steel industry. An approach for sustainable use of biomass must consider diverse technological, economic, environmental and social aspects. This paper focuses primarily on biomass sources, resources, availability, processing steps and products as well as trading and costs. Afterwards three major options for the use of biomass in the steel industry are presented: injection, incorporation into the charging materials and reducing gas generation. Two technologies — an injection into the blast furnace and an introduction of self-reducing pellets and composites with embedded charcoal — are discussed in more detail. Biomass production and availability of its free resources differs significantly by world regions. Therefore it is hardly possible to find out a unique global solution and evaluation for biomass use. In Germany and in Europe, the wooden biomass production and use is balanced; it means that virtually no additional own resources are currently available. The share of energetic use of biomass (for heat and power generation) is steadily increasing. Strategy for long-term global sustainability of biomass should be based on its primary use as raw materials; waste and biomass residues can be used as energy sources and reducing agents. Raw biomass properties do not enable their high efficiency use in the steel industry. It is beneficial to use pyrolysed biomass such as charcoals or torrefied materials. Quality requirements on biomass products depend on their application. In the case of biomass import, costs and emissions of its transport have to be considered. The biomass processing on the export site is preferred; advanced industrial technologies have to be used.

keywords Biomass, carbon dioxide emissions, injection, self-reducing pellets, composites, embedded charcoal, charging materials, generation of reducing gas

1. Rehder, J. E.: Iron Steelmak. 25 (1998) No. 12, pp. 29/33.
2. Williams, M.: Deforesting the Earth, University of Chicago Press, 2003, 715 p. ISBN 0-226-89926-8.
3. Babich, A.; Senk, D.; Fernandez, M.: ISIJ Int. 50 (2010) No. 1, pp. 81/88.
4. Assis, P. S.: Private communication, Jan 2013.
5. Machado, J.; Osório, E.; Vilela, A.; Babich, A.; Senk, D.; Gudenau, H. W.: steel res. int. 81 (2010) No. 1, pp. 9/15.
6. Vilela, A.: Private communication, Jan 2013.
7. Mathieson, J. G.; Rogers, H.; Somerville, M.; Jahanshahi, S.: ISIJ Int. 52 (2012) No. 8, pp. 1489/96.
8. Nascimento, R.; Almeida, A.; Oliveira, E. et al.: Proc. 3rd International Meeting on Ironmaking and the 2nd Intern. Symp. on Iron Ore, ABM Publishers, São Luís City-Maranhão State-Brazil, Brazil, 22–26 Sept 2008, Vol. 3, p. 845.
9. Brazil: VSB inauguration, Vallourec Press Pack (1 Sept 2011), 19 p.,, accessed: 26 March 2013.
10. Kaukal Valladares, S.; Garcia Scherer, S. W.: Brazilian green pig iron industry, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 14–18 Oct 2012, panel presentation (ISSN: 2176-3135).
11. Sampaio, R. S.: Recent developments in the biomass based mini blast furnace technologies and its actual and future capacities and production in Brazil, Proc. AIST Scrap Substitutes and Alternative Ironmaking IV, Baltimore, USA, 31 Oct — 2 Nov 2004.
12. Mathieson, J. G.; Norgate, T.; Jahanshahi, S.; Somerville, M. A.; Haque, N.; Deev, A.; Ridgeway, P.; Zulli, P.: The potential for charcoal to decrease net greenhouse gas emission from the Australian steel industry, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 14–18 Oct 2012, pp. 1602/13.
13. Biofuel technology platform,, accessed: 26 March 2013.
14. Fritsche, U. R.; Kampman, B.; Bergsma, G.: Better use of biomass for energy, Position Paper of IEA RETD and IEA Bioenergy, Dec 2009.
15. Taibi, E.; Gielenb, D.; Bazilianc, M.: Renewable and Sustainable Energy Rev. 16 (2012) No. 1, pp. 735/44.
16. Mantau, U.: Holz — Potenzial und Verfügbarkeit (2008),, accessed: 26 March 2013.
17. Bioenergy — Chances and Limits, German National Academy of Sciences Leopoldina, Halle/Saale, Germany, 2012.
18. Branco, M. A.; da Silva, L. B.; de Oliveira, A. C.; Sampaio, R. S.; da Silveira, M. L.: Biosteel: a self-sustainable solution to produce seamless steel tubes directly from planted biomass, Proc. The Bioenergy 2002 — Bioenergy for the Environment, 22–26 Sept 2002, Boise, USA, p. 11.
19. Fritsche, U. R.; Hennenberg, K. J.; Hermann, A.; Hünecke, K.; Herrera, R.; Fehrenbach, H.; Roth, E.; Hennecke, A.; Giegrich. J.: Development of strategies and sustainability standards for the certification of biomass for international trade. Summarizing Final Report, 49/2010, [Publ.:] Federal Environment Agency (Umweltbundesamt), Dessau-Roßlau, Germany, Nov 2010.
20. Wiklund, C.-M.; Pettersson, F.; Saxén, H.: ISIJ Int. 52 (2012) No. 1, pp. 35/44.
21. Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. [Publ.]: Energie aus Biomasse — Grundlagen, Techniken und Verfahren (eBook), 2. ed. 2009.
22. Industrial charcoal making,, accessed: 25 March 2013.
23. Duku, M. H.; Gu, S.; Hagan, E. B.: Renew Sustain Energy Rev (2011) No. 15, pp. 3539/51.
24. Antal Jr, M. J.; Croiset, E.; Dai, X.; DeAlmeida, C.; Mok, W. S. L.; Norberg, N.; et al.: Energy Fuels (1996) No. 10, pp. 652/58.
25. Suopajärvi, H.; Fabritius, T.: Towards More Sustainable Ironmaking — An Analysis of Energy / Wood Availability in Finland and the Economics of Charcoal Production, Sustainability 2013, 5, ISSN 2071-1050 4,, forthcoming.
26. Shackley, S.; Hammond, J.; Gaunt, J.; Ibarrola, R.: Carbon Management 2 (2011) No. 3, pp. 335/56.
27. Norgate, T.; Langberg, D.: ISIJ Int. 49 (2009) No. 4, pp. 587/95.
28. Hu, Z.; Zhang, J.; Zuo, H.; Tian, M.; Liu, Z.; Yang, T. Substitution of biomass for coal and coke in ironmaking process, Adv. Mat. Res. Vol. 236–238 (2011) pp. 77/82, available online at, Trans Tech Publ., Durnten-Zurich, Switzerland.
29. Baxter, L.; Roberts, W.; Hong, L.: Particle conversion rates during biomass combustion, Proc. 35th Intern. Techn. Conf. on Clean Coal and Fuel Systems, 6–10 June 2010, Clearwater, USA.
30. Babich, A.; Arnsfeld, S.; Senk, D.; Gudenau, H. W.: Investigation of usage of biomass in steelmaking — research activities at the IEHK in Aachen, Proc. Intern. workshop on utilisation of biomass for mitigation of CO2 Emissions, Sendai, Japan, 12 Dec 2011, pp. 2.1/17.
31. Deev, A.; Jahanshahi, S.: Development of a pyrolysis technology to produce large quantities of charcoal for the iron and steel industry, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI),
Rio de Janeiro, Brazil, 14–18 Oct 2012, pp. 1132/42.
32. Babich, A.; Senk, D.; Fernandez, M.: Blast furnace technology with charcoal injection: technological and ecological aspects, Proc. 5th Int. Congr. on the Science and Technology of Ironmaking (ICSTI’09), Shanghai, China, 2009, pp. 762/66.
33. Arnsfeld, S.; Rodriguez Correa, C.; Choi, S.-M.; Babich, A.; Senk, D.; Gudenau, H. W.: Investigations of the reaction kinetics of torrefied biomass for metallurgical applications, Proc. 6th Int. Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 14–18 Oct 2012, pp. 1492/1502.
34. Arnsfeld, S.; Babich, A.; Senk, D.: Characterisation of pyrolysed biomass as an alternative option to pulverised coal injection into the blast furnace, Proc. 4th Intern. Conf. on Process Development in Iron and Steelmaking (Scanmet IV), 10–13 June 2012, Luleå, Sweden, Vol. 1, pp. 639/48.
35. Babich, A.; Arnsfeld, S.; Kowitwarangkul, P.; Senk, D.: Biomass use in ironmaking: options and limits, Proc. 6th Int. Congr. on the Science and Technology of Ironmaking (ICSTI) Rio de Janeiro, Brazil, 14–18 Oct 2012, pp. 1 166/78.
36. Babich, A.; Arnsfeld, S.; Senk, D.; Gudenau, H. W.: Biomass Use in the Iron and Steel Metallurgy, Proc. 54th Committee Meeting of the Japan Society for the Promotion of Science, Tokyo, Japan, 8–9 Dec 2011, pp. 1.1/14.
37. Assis, P.: Einblasen von Holzkohle in den Hochofen, RWTH Aachen, 1991 (Doctoral thesis).
38. Mathieson, J. G.; Rogers, H.; Somerville, M.; Ridgeway, P.; Jahanshahi, S.: Use of biomass in the iron and steel industry — an Australian perspective, Proc. METEC InSteelCon 2011, 1st Intern. Conf. on Energy Efficiency and CO2 Reduction in the Steel Industry (EECRSteel), Düsseldorf, Germany, 27 June — 1 July 2011 (on CD-ROM).
39. Suopajärvi, H.; Fabritius, T.: ISIJ Intern. 52 (2012) No. 5, pp. 779/87.
40. Contract No. RFSR-CT-2005-00001 and project FKZ EN-2054, the Ziel 2 program.
41. Naito, M.; Okamoto, A.; Yamaguchi, K.; Yamaguchi, T.; Inoue, Y.: Tetsuto-Hagane, 87 (2001) No. 5, pp. 357/64.
42. Ariyama, T.; Murai, R.; Ishii, J.; Sato, M.: ISIJ Int. 45 (2005) No. 10, pp. 1371/78.
43. Yokoyama, H.; Higuchi, K.; Ito, T.; Oshio, A.: ISIJ Int. 52 (2012) No. 11, pp. 2 000/6.
44. Babich, A.; Senk, D.; Gudenau, H. W.: Ironmak. Steelmak. 36 (2009) No. 3, pp. 222/29.
45. Kowitwarangkul, P.; Babich, A.; Senk, D.: Pellets mit eingebettetem Kohlenstoff für den Mini-Hochofen, 27. Aachener Stahlkoll., 13–14 Sept 2012, Aachen, Germany, pp. 17/28.
46. Ohno, K.; Kaimoto, M.; Maeda, T.; Nishioka, K.; Shimizu, M.: ISIJ Int. 51 (2011) No. 8, pp. 1279/84.
47. Ohno, K.; Babich, A.; Mitsue, J.; Maeda, T.; Senk, D.; Gudenau, H. W.; Shimizu, M.: ISIJ Int. 52 (2012) No. 8, pp. 1482/88.

Language of full-text russian
Full content Buy